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INTRODUCTION
Contained in the material following is a derivation and selected solutions of the rotational dynamic equations

of motion for a dual-spin spacecraft and single spinning body spacecraft are covered as a subset. Since the class of
body-stabilized spacecraft often have momentum bias, intentional or otherwise, much of the material applies there as
well. The material has been developed, collected, and compiled by the writer over a period of several years. It
arises primarily out of the writer’s desire never to work the same problem twice, hence each solution is systemati-
cally recorded the third time it is obtained.

The treatment of vectors, matrices, inertia dyadics, and coordinate system (vector basis) accounting through-
out is after that described in Ref. 34, Sect. 2 and/or Ref.35, Appendix B.
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1.0 Momentum Derivation
The spacecraft system angular momentum with respect to an inertial point is expressed generically as

H = ∫ (ro + r) × (ṙo + ṙ)dm (1.1)

where ro is the position of the vehicle mass center with respect to an inertial point and r is the position of the dual-
spin spacecraft platform and rotor mass elements. Using definitions of ri, μμi given by Figure 1.1, the total momen-
tum is

H = Hp + Hs (1.2)

with components

Hp =
P
∫ (ro + rp + μμp) × ( ṙo + ṙp + μ̇̇μp)dm

= mp(ro + rp) × (ṙo + ṙp) + ∫ μμp × μ̇̇μpdm (1.3a)

= mp(ro × ṙo + ro × ṙp + rp × ṙo) + mp(rp × ṙp) + ∫ μμp × μ̇̇μpdm ,

and

Hs =
R
∫ (ro + rs + μμs) × ( ṙo + ṙs + μ̇̇μs)dm

= ms(ro + rs) × (ṙo + ṙs) + ∫ μμs × μ̇̇μsdm (1.3b)

= ms(ro × ṙo + ro × ṙs + rs × ṙo) + ms(rs × ṙs) + ∫ μμs × μ̇̇μsdm .

The sub-s and sub-p are used hereafter to denote properties of the rotor and platform respectively. The vectors μμi are

assumed fixed in the respective bodies and the center of mass definition, ∫ μμsdm = 0, has been used repeatedly in

going from the first to the second form above. We shall immediately simplify by assuming both bodies statically
balanced, mass centers on the common bearing axis, and denote the resultant restricted body cm positions as rs = r1

and rp = r2. The result of this is that both body cm position vectors are fixed in the respective bodies.

rs

μs

Rotor Mass Element

Rotor cm 
ms, Js

Platform cm 
mp, Jp

Platform Mass Element

rp

μp es, Rotor Basis

ep, Platform Basis

Inertial Point

Spacecraft cm

Figure 1.1  Dual-Spin Spacecraft Mass Model.
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The inertial angular rates of the bodies are denoted ωωi. Then, computing the inertial time derivative

μ̇̇μs =
s
dμμs

dt
+ ωωs × μμs = ωωs × μμs (1.4)

ṙ1 =
s
dr1

dt
+ ωωs × r1 = ωωs × r1 (1.5)

where
s
dv
dt

indicates differentiation in a rotor fixed basis. The rotor momentum can then be expressed as

Hs = ms(ro × ṙo + ro × ṙ1 + r1 × ṙo) + ms(r1 × ṙ1) + ∫ μμs × [ωωs × μμs]dm

= ms(ro × ṙo + ro × ṙ1 + r1 × ṙo) + ms(r1 × [ωωs × r1]) + Js ⋅ ωωs. (1.6)

= ms(ro × ṙo + ro × ṙ1 + r1 × ṙo) + Is ⋅ ωωs.

In the preceding Ji denotes the inertia dyadic of a body with respect to the body cm, while Ii denotes the iner-
tia dyadic with respect to the vehicle cm. We shall attempt to hold to this convention in the following text. The iner-
tia dyadic is introduced to represent the integral term as follows:

∫ μμs × [ωωs × μμs]dm = ∫ [(μμs ⋅ μμs)ωωs − (μμs ⋅ ωωs)μμs]dm = ∫ [(μμs ⋅ μμs)ωωs − μμs(μμs ⋅ ωωs)]dm (1.7)

= ∫ [(μμs ⋅ μμs)U ⋅ ωωs − μμs(μμs ⋅ ωωs)]dm = { ∫ [(μμs ⋅ μμs)U − μμsμμs]dm} ⋅ ωωs .

U is the unit dyadic defined to facilitate factoring ωωs from the integral. In this writer’s experience it is almost never
necessary to expand the details of the dyadic(see Ref. 1, p. 419), however the dyadic notation is extremely useful in
analysis.

Replacing rp with r2 in Eq. 1.3a and carrying out the same manipulation yields the companion platform
momentum expression,

Hp = mp(ro × ṙo + ro × ṙ2 + r2 × ṙo) + mp(r2 × [ωωp × r2]) + Jp ⋅ ωωp.

= mp(ro × ṙo + ro × ṙ2 + r2 × ṙo) + Ip ⋅ ωωp. (1.8)

Next we choose appropriate vector bases and define some required vector components. We define a vector
basis in the form

eT
s = [es1, es2, es3] ,  (1.9)

where the elements are unit vectors along the three right handed orthogonal coordinates of basis es, similar to the
i, j, k triad once frequently used. With this notation a vector v in es is written

v = eT
s v = eT

s [v1, v2, v3]T

= [es1, es2, es3]
⎡
⎢
⎢
⎣

v1

v2

v3

⎤
⎥
⎥
⎦

= v1es1 + v2es2 + v3es3.

As with the dyadic, we will never find it necessary to expand the basis as is done here to clarify the meaning.

Now we choose a rotor fixed basis es with 3-axis along the spin axis, positive tow ard the platform, and the
remaining two axes forming a right handed triad. Further, a platform fixed basis is chosen related to the rotor basis
as

es = B(ψ)ep =
⎡
⎢
⎢
⎣

cos ψ
−sin ψ

0

sin ψ
cos ψ

0

0

0

1

⎤
⎥
⎥
⎦

ep . (1.10)

With the notation just set up the basis that the scalar components of a vector are expressed in are always evident, for
example v = eT

s v immediately means the components of v are expressed in es. Also, it is systematic and
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straightforward to transform from one basis to another. Again for example, transposing Eq. 1.10,eT
s = eT

pB(ψ)T and
this can be substituted directly to obtainv = eT

s v = eT
pB(ψ)Tv so that the elements ofv in ep are immediately evident

as B(ψ)Tv. Finally, we claim that inertia matrices, dyadics, and vector bases are handled systematically with this
notation. To demonstrate, let Js be the rotor inertia matrix(Ref. 1, p. 420), andJs be the corresponding inertia
dyadic. Then,

Js = eT
s Jses,

and if one wishes to express this inertia in the platform basis(rotate the matrix to a new coordinate system), it is
again straightforward to substitute fores from 1.10 getting

Js = eT
pB(ψ)TJsB(ψ)ep,

so that B(ψ)TJsB(ψ) is the rotor inertia matrix expressed in the platform basis. Next we introduce the matrix repre-
sentation of the vector cross product as

u × v = eTu× eTv = eTũv = − eTṽu (1.11)

ũ =





0

u3

−u2

−u3

0

u1

u2

−u1

0






; [ũ + ṽ] = [u + v] ˜ ; ũṽ = [ṽũ]T ≠ ṽ ũ ,

and remark for future reference that B(ψ)ũ ≠ [B(ψ)u] ˜.

Referring to 1.10 again, we denote the relative angular velocity between rotor and platform as

ωωr = ωωs − ωωp = eT
s [ 0, 0, ωr]

T = eT
s [ 0, 0, ψ̇]T. (1.12)

It is noteworthy that a large fraction of the analysis of any giv en problem can be done without ever choosing
the vector bases. Only when one wishes quantitatively to fix the components or impose certain system constraints
need the bases be chosen. We hav e chosen the 3-axis of rotor and platform bases in our dual-spin vehicle by virtue
of (1.10) to coincide with the bearing axis constraint and used this in (1.12). However, the 1 and 2-axes in both bod-
ies remain arbitrary for the present. Now various previously defined vectors are assigned in their respective coordi-
nate bases as follows:

Hs = eT
s Hs (1.13a)

ωωs = eT
s ωs (1.13b)

r s = eT
s rs (1.13c)

Js = eT
s Jses (1.13d)

I s = eT
s Ises (1.13e)

and similarly for the platform

Hp = eT
pHp (1.14a)

ωωp = eT
pωp (1.14b)

rp = eT
prp (1.14c)

Jp = eT
pJpep (1.14d)

Ip = eT
pIpep . (1.14e)
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Using the above definitions and taking ro = 0, Eq. 1.6 is rewritten

Hs = eT
s Hs = eT

s Jses ⋅ eT
s ωs − mse

T
s r1 × [eT

s r1 × eT
s ωs] (1.15)

= eT
s [Jsωs − msr̃1r̃1ωs] = eT

s [Js − msr̃1r̃1]ωs = eT
s Isωs

from which we infer

Is = Js − msr̃1r̃1 , (1.16)

and
Hs = Isωs = [Js − msr̃1r̃1]ωs (1.17)

gives the components of rotor momentum Hs in the rotor fixed frame es. In similar fashion

Ip = Jp − mpr̃2r̃2 , (1.18)

and

Hp = Ipωp . (1.19)

The total angular momentum with respect to the vehicle cm is

H = Hs + Hp = Is ⋅ ωωs + Ip ⋅ ωωp = eT
s Isωs + eT

p Ipωp

= eT
p [BTIsωs + Ipωp] = eT

s [Isωs + BIpωp] .  (1.20)

Noting that

ωωs = eT
s ωs = ωωp + ωωr = eT

p ωp + eT
s ωr = eT

s [Bωp + ωr] ,  (1.21)

where the liberty is taken(see Eq. 1.12) to let the symbol ωr represent the three-vector ωr = [0, 0, ωr]
T and its 3-axis

component. Similarly,

ωωp = eT
p ωp = ωωs − ωωr = eT

s [ωs − ωr] = eT
p [BTωs − ωr] .  (1.22)

We hav e freely used the special nature of ωr = BTωr = Bωr in the preceding two equations. Next, using Equation
1.21 in 1.201,

H = eT
s [IsBωp + Isωr + BIpωp] = eT

p [BTIsBωp + BTIsωr + Ipωp]

= eT
p [{Ip + BTIsB}ωp + BTIsωr] = eT

p Hp , (1.23)

giving an expression of total vehicle angular momentum in terms of platform and relative rate in either coordinate
system. Using Equation 1.22 in 1.20 gives the parallel case in terms of ωs and ωr as

H = eT
p [BTIsωs − Ipωr + IpBTωs] = eT

s [Isωs − BIpωr + BIpBTωs]

= eT
s [{Is + BIpBT}ωs − BIpωr] = eT

s Hs . (1.24)

The inertia matrix is developed in terms of basic scalar integrals in Ref. 1, p 417. Herein, we denote the elements of
an inertia matrix as

Ii =
⎡
⎢
⎢
⎣

Ii
11

−Ii
12

−Ii
13

−Ii
12

Ii
22

−Ii
23

−Ii
13

−Ii
23

Ii
33

⎤
⎥
⎥
⎦

, (1.25)

where i = s, or p respectively for rotor or platform. At this juncture it is appropriate to dwell on the conventions for

the elements of the inertia matrix. The diagonal elements Iii = ∫ xiyjdm are always positive so giv e rise to no confu-

sion. For off diagonal elements we have inserted a negative sign in (1.25) and when scalar expansions of equations
are carried out this sign is retained. This means that when substituting for Iij in a scalar expansion in this docu-

ment(and in most cases around Hughes) one should substitute ∫ xiyjdm. At this writing(January 1988) this is the

1 Note the subscript on Hp denotes the platform momentum only, while the superscript on Hp indicates the compo-
nents of total vehicle angular momentum in platform basis ep.
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number consistently reported by Hughes mass properties for product of inertia. Now, when the numbers are inserted
in a matrix and used as in Eq. 1.24, say in computer matrix manipulation, the negative sign must be overtly inserted,

i.e., the off diagonal elements in Is, Ip of (1.24) must be− ∫ xiyjdm. To repeat, the off diagonal numbers supplied by

mass properties must be negated before substitution in a matrix, but may be used directly in scalar expansions
herein.

Before proceeding to the torque equation, we digress to note some convenient properties of H under certain
mass property constraints on the rotor and/or platform. The term BTIsB multiplying ωp in the second form of Eq.
1.23 is the time-varying rotor inertia seen in platform coordinates, which expands as

BTIsB =





Is
11

−Is
12

−Is
13

−Is
12

Is
22

−Is
23

−Is
13

−Is
23

Is
33






(1.26)

=





Is
11 + ∆Is sin2 ψ + Is

12 sin 2ψ
−Is

12 cos 2ψ − (∆Is/2) sin 2ψ
−Is

13 cosψ + Is
23 sinψ

− − − − − − − − − − − −
Is
22 − ∆Is sin2 ψ − Is

12 sin 2ψ
−Is

23 cosψ − Is
13 sinψ

− −
− −
Is
33






.

Equation 1.26 shows that if the rotor is symmetric (transverse inertias equal implying∆Is = Is
12 = 0) and is dynami-

cally balanced (products of inertia vanish, Is
13 = Is

23 = 0), then BTIsB = Is. Also, dynamic balance alone is sufficient
to render BTIsωr = Isωr. Thus, for the but important special case

H = eT
p[I s(ωp + ωr) + Ipωp] = eT

p[(I s + Ip)ωp + Isωr] ;  (symmetric and balanced rotor) . (1.27)

Similarly, with the same constraint imposed on the platform, the momentum in rotor coordinates reduces to

H = eT
s [I sωs + Ip(ωs − ωr)] = eT

s [(I s + Ip)ωs − Ipωr] ;  (symmetric and balanced platform) . (1.28)

Expanding the total system angular momentum in platform coordinates in terms ofωp andωr

Hp =





[I p
11 + Is

11]ωp1 + [−Ip
12 − Is

12]ωp2 + [−Ip
13 − Is

13]ωp3 − Is
13ωr

[−Ip
12 − Is

12]ωp1 + [I p
22 + Is

22]ωp2 + [−Ip
23 − Is

23]ωp3 − Is
23ωr

[−Ip
13 − Is

13]ωp1 + [−Ip
23 − Is

23]ωp2 + [I p
33 + Is

33]ωp3 + Is
33ωr






(1.29)

=









[I 11 + ∆Is sin2 ψ + Is
12 sin 2ψ]ωp1 + [−Ip

12 − Is
12 cos 2ψ −

∆Is

2
sin 2ψ]ωp2 − [I s

13 cosψ − Is
23 sinψ][ωp3 + ωr] − Ip

13ωp3

[−Ip
12 − Is

12 cos 2ψ −
∆Is

2
sin 2ψ]ωp1 + [I 22 − ∆Is sin2 ψ − Is

12 sin 2ψ]ωp2 − [I s
23 cosψ + Is

13 sinψ][ωp3 + ωr] − Ip
23ωp3

[−Ip
13 − Is

13 cosψ + Is
23 sinψ]ωp1 + [−Ip

23 − Is
23 cosψ − Is

13 sinψ]ωp2 + Is
33[ωp3 + ωr] + Ip

33ωp3









where

Iii = Ip
ii + Is

ii (1.30a)

∆Ij = Ij
22 − Ij

11 . (1.30b)

The parallel expansion in rotor coordinates is obtained by exchanging Ip and Is, replacingωp with ωs, and replacing
ωr with −ωr in Equation 1.29.
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2.0 Dual-Spin Torque Equations
The torque equation is derived by first differentiating the first form in Eq. 1.20.

T = Ḣ = İ s ⋅ ωωs + I s ⋅ ω̇̇ωs + İp ⋅ ωωp + Ip ⋅ ω̇̇ωp . (2.1)

The dyadic derivatives expand as

İ s =
s
dI s

dt
+ ωωs × I s − I s × ωωs = ωωs × I s − I s × ωωs (2.2)

where
s
d/dt indicates differentiation in thees frame and the first term above vanishes because Is is constant in this

frame. In the same fashioṅIp = ωωp × Ip − Ip × ωωp. When substituted in Equation 2.1, bothI s × ωωs ⋅ ωωs and
Ip × ωωp ⋅ ωωp vanish because they are inner products of orthogonal vectors. Hence,

Ḣ = ωωs × I s ⋅ ωωs + I s ⋅ ω̇̇ωs + ωωp × Ip ⋅ ωωp + Ip ⋅ ω̇̇ωp . (2.3)

Now we want the matrix formulation oḟH. First it is obtained in terms ofωp andωr , using

ωωs = ωωp + ωωr = eT
pωp + eT

s ωr = eT
s [Bωp + ωr] ,  (2.4)

and

ω̇̇ωs =
s
dωωs

dt
+ ωωs × ωωs =

s
dωωs

dt
= eT

s ω̇s = eT
s [Ḃωp + Bω̇p + ω̇r] .  (2.5)

Equation 2.3 becomes

Ḣ = eT
s {[ ˜Bωp + ω̃r]I s[Bωp + ωr] + Is[Ḃωp + Bω̇p + ω̇r]} + eT

p[ω̃pIpωp + Ipω̇p]

= eT
p{B T[ ˜Bωp + ω̃r]I s[Bωp + ωr] + BTIs[Ḃωp + Bω̇p + ω̇r] + ω̃pIpωp + Ipω̇p} = eT

pḢ
p

(2.6)

= eT
p{ ω̃pHp + BTω̃rIs[Bωp + ωr] + BTIs[Ḃωp + Bω̇p + ω̇r] + Ipω̇p]

where the last form with Hp is obtained using the kinematic identitỹBωp = Bω̃pBT.

Now apply torques in the notation

Ḣ = Ts + Tp = eT
s Ts + eT

pTp (2.7)

such that

eT
pḢ

p = eT
p[BTTs + Tp] .  (2.8)

Substituting Eq. 2.8 in 2.6, premultiplying both sides byep, and solving foṙωp, the result is

ω̇p = [I p + BTIsB]−1{ − BT[ ˜Bωp + ω̃r]I s[Bωp + ωr] − BTIs
˙[Bωp + ω̇r] − ω̃pIpωp + BTTs + Tp}

= [I p + BTIsB]−1{ − ω̃pHp − BTω̃rIs[Bωp + ωr] − BTIs
˙[Bωp + ω̇r] + BTTs + Tp} .  (2.9)

Repeating the derivation of Equations 2.4 to 2.9 in the rotor basis and expressing in terms ofωs andωr ,

ωωp = eT
pωp = eT

p[BTωs − ωr] ,  (2.10)

ω̇̇ωp =
p
dωωp

dt
= eT

pω̇p = eT
p[Ḃ

Tωs + BTω̇s − ω̇r] ,  (2.11)

Ḣ = eT
s { ω̃sIsωs + Isω̇s + B[(BTωs)˜ − ω̃r]I p[BTωs − ωr] + BIp[Ḃ

Tωs + BTω̇s − ω̇r]} = eT
s Ḣ

s

= eT
s { ω̃sH

s − Bω̃rIp[BTωs − ωr] + BIp
˙[B

Tωs + BTω̇s − ω̇r] + Isω̇s} ,  (2.12)

and

ω̇s = [I s + BIpBT]−1{ − B[(BTωs)˜ − ω̃r]I p[BTωs − ωr] − BIp
˙[B

Tωs − ω̇r] − ω̃sIsωs + Ts + BTp}

= [I s + BIpBT]−1{ − ωsH
s + Bω̃rIp[BTωs − ωr] − BIp

˙[B
Tωs − ω̇r] + Ts + BTp} .  (2.13)

2.1



Taking the rotor and platform individually as free bodies

Ḣs = eT
s [ω̃sIsωs + Isω̇s] = eT

s [ω̃sHs + Isω̇s] = eT
s Ḣs = L s = eT

s Ls (2.14)

ω̇s = I−1
s [−ω̃sIsωs + Ls] = I−1

s [−ω̃sHs + Ls] (2.15)

Ḣp = eT
p[ω̃pIpωp + Ipω̇p] = eT

p[ω̃pHp + Ipω̇p] = eT
pḢp = Lp = eT

pLp (2.16)

ω̇p = I−1
p [−ω̃pIpωp + Lp] = I−1

p [−ω̃pHp + Lp] (2.17)

where Ls and Lp denote torques applied to the rotor and platform in their respective bases.

Using the kinematic identitẏB = − ω̃rB, which can be verified by direct substitution, the following accelera-
tion expressions are obtained from Equations 2.9 and 2.13.

ω̇p = [I p + BTIsB]−1{ − ω̃pHp − BT[ω̃rIs − Isω̃r]Bωp − BT[ω̃rIsωr + Isω̇r] + BTTs + Tp} ,  (2.18)

and

ω̇s = [I s + BIpBT]−1{ − ω̃sH
s + B[ω̃rIp − Ipω̃r]B

Tωs − B[ω̃rIpωr − Ipω̇r] + Ts + BTp} .  (2.19)

Now the terms of Equation 2.18 are listed in detail. Hp has already been given as Equation 1.29. The coeffi-
cient ofωp in the second term is

BT[ω̃rIs − Isω̃r]B = ω̃rB
TIsB − BTIsBω̃r = ωr






2Is12

Is
11 − Is

22

Is
23

− −
−2Is12

−Is
13

− −
− −
0






(2.20)

= ωr






2Is12 cos 2ψ + ∆Is sin 2ψ
2Is12 sin 2ψ − ∆Is cos 2ψ

Is
23 cosψ + Is

13 sinψ

− − − − − − − − − − −
−2Is12 cos 2ψ − ∆Is sin 2ψ

−Is
13 cosψ + Is

23 sinψ

− −
− −
0






,

where Isij denotes rotor inertia elements expressed inep , i.e., the elements of (1.26). Missing terms in (2.20) are sup-
plied by symmetry. The third term in Equation 2.18 is

BT[ω̃rIsωr + Isω̇r] = ω2
r [I s

23, − Is
13, 0]T + ω̇r[−Is

13, − Is
23, Is33]

T (2.21)

= ω2
r






Is
23 cosψ + Is

13 sinψ
−Is

13 cosψ + Is
23 sinψ

0






+ ω̇r






−Is
13 cosψ + Is

23 sinψ
−Is

23 cosψ − Is
13 sinψ

Is
33






.

Lastly, the three scalar equations from (2.18) and the 3-axis equation from Equation 2.15 are expanded in detail as
Equation 2.22. As noted before all of equations (2.20) through (2.22c) transform to rotor coordinates by exchanging
Ip for Is, ωs for ωp , and−ωr for ωr. This exchange in Equation 2.22d produces the 3-axis equation of (2.17).

Some comment on application of torques is in order at this point. When we addḢp + Ḣs = Ḣ in Equation 2.1,
all internal torques cancel. Therefore, internal torques, such as the despin torque, do not appear in the various forms
of Equation 2.1, e.g., Equation 2.18, 2.19, and 2.22a - c. Instead, internal torques appear as driving torques to the
free body equations (2.14), (2.16), or (2.22d). Note that transverse axis internal torques are meaningless, except to
determine internal structural loads, as the rotor and platform are constrained to be relatively fixed about these axes.
Conversely, external torques do appear in both the appropriate free body equation and the sum,Ḣ, equation. For
example, the Adams1 dedamper model applies external rotor spin down torque which must appear in (2.22c and d).
However, note that a platform external spin torque will appear in Equation 2.22c only.

1 IDC 4113.10/346, "Dedamper Simulation Model," G. J. Adams, December 4, 1973.
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[I 11 + ∆Is sin2 ψ + Is
12 sin 2ψ]ω̇p1 =

[I p
12 + Is

12 cos 2ψ +
∆Is

2
sin 2ψ]ω̇p2 + [I p

13 + Is
13 cosψ − Is

23 sinψ]ω̇p3

− Is
33[ωp3 + ωr]ωp2 + [I 22 − Ip

33 − ∆Is sin2 ψ − Is
12 sin 2ψ]ωp2ωp3

+ [I p
13 + Is

13 cosψ − Is
23 sinψ]ωp1ωp2 + [I p

23 + Is
23 cosψ + Is

13 sinψ]ω2
p2 (2.22a)

− [I p
12 + Is

12 cos 2ψ +
∆Is

2
sin 2ψ]ωp1ωp3 − [I s

23 cosψ + Is
13 sinψ][ωp3 + ωr]

2 − Ip
23ω2

p3

− [2Is
12 cos 2ψ + ∆Is sin 2ψ]ωrωp1 − [2Is

12 sin 2ψ − ∆Is cos 2ψ]ωrωp2 + [I s
13 cosψ − Is

23 sinψ]ω̇r

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

[I22 − ∆Is sin2 ψ − Is
12 sin 2ψ]ω̇p2 =

[I p
12 + Is

12 cos 2ψ +
∆Is

2
sin 2ψ]ω̇p1 + [I p

23 + Is
23 cosψ + Is

13 sinψ]ω̇p3

+ Is
33[ωp3 + ωr]ωp1 − [I 11 − Ip

33 + ∆Is sin2 ψ + Is
12 sin 2ψ]ωp1ωp3

− [I p
23 + Is

23 cosψ + Is
13 sinψ]ωp1ωp2 − [I p

13 + Is
13 cosψ − Is

23 sinψ]ω2
p1 (2.22b)

+ [I p
12 + Is

12 cos 2ψ +
∆Is

2
sin 2ψ]ωp2ωp3 + [I s

13 cosψ − Is
23 sinψ][ωp3 + ωr]

2 + Ip
13ω2

p3

− [2Is
12 sin 2ψ − ∆Is cos 2ψ]ωrωp1 + [2Is

12 cos 2ψ + ∆Is sin 2ψ]ωrωp2 + [I s
13 sinψ + Is

23 cosψ]ω̇r

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

I33ω̇p3 = [I p
13 + Is

13 cosψ − Is
23 sinψ]ω̇p1

+ [I p
23 + Is

23 cosψ + Is
13 sinψ]ω̇p2

[I 11 − I22 + 2∆Is sin2 ψ + 2Is12 sin 2ψ]ωp1ωp2

+ Ip
23ωp1ωp3 − Ip

13ωp2ωp3 − Is
33ω̇r (2.22c)

+ [I p
12 + Is

12 cos 2ψ +
∆Is

2
sin 2ψ][ω2

p1 − ω2
p2]

+ [I s
23 cosψ + Is

13 sinψ]ωp1ωp3 − [I s
13 cosψ − Is

23 sinψ]ωp2ωp3

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

Is
33[ω̇p3 + ω̇r] = [I s

13 cosψ − Is
23 sinψ]ω̇p1 + [I s

13 sinψ + Is
23 cosψ]ω̇p2

− [∆Is cos 2ψ − 2Is12 sin 2ψ]ωp1ωp2 + [I s
13 sinψ + Is

23 cosψ]ωp1ωp3 (2.22d)

− [I s
13 cosψ − Is

23 sinψ]ωp2ωp3 − [I s
12 cos 2ψ +

∆Is

2
sin 2ψ][ω2

p2 − ω2
p1]
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2.1 Simplifications of Dual-Spin Torque Equations
2.1.1 Dynamically Balanced Rotor

Several steps of simplification may be carried out on (2.22) to obtain a much more tractable model for analy-
sis. First we assume rotor dynamic balance, which removes the dominant sinusoidal driving torques of (2.22), then
rotor symmetry is imposed which renders the system linear and time-invariant, and decouples the rotor equation
(2.22d) from the remaining three. Lastly, requiring the platform to be dynamically balanced as well decouples the
spin axis dynamics (2.22c) form the transverse axes.

Rotor dynamic imbalance produces first-order sinusoidal dynamic torques on a the dual-spin vehicle propor-
tional to the product of imbalance and the relative rate squared,ω2

r . These torques can be identified as the seventh
major term listed in Eqs. 2.22a and b. Assuming dynamic balance, let Is

13 = Is
23 = 0, and set Is12 = 0 by choice of vec-

tor basis subsequent to the dynamic balance condition. Then Eq. 2.21 shows that

BT[ω̃rIsωr + Isω̇r]
T = [0, 0, Is33ω̇r]

T . (2.23)

Usingω̇r = ω̇s3 − ω̇p3 and rewriting Eq. 2.18,

[I p + BTIsB]ω̇p = − ω̃pHp − BT[ω̃rIs − Isω̃r]Bωp + BTTs + Tp − [0, 0, Is33(ω̇s3 − ω̇p3)]
T . (2.24)

Now let

I = [I p + BTIsB] −





0

0

0

0

0

0

0

0

Is
33






. (2.25)

Then

ω̇p = I−1{ − ω̃pHp − BT[ω̃rIs − Isω̃r]Bωp − [0, 0, Is33ω̇s3]
T + BTTs + Tp} .  (2.26)

For rotor spin axis dynamics Equation 2.15 provides

ω̇s3 = ωs1ωs2[I
s
11 − Is

22]/I
s
33 + Ls3/I

s
33 . (2.27)

2.1.2 Dynamically Balanced and Symmetric Rotor

If in addition to Is13 = Is
23 = 0 (balance), we have Is

22 − Is
11 = ∆Is = 0 = Is

12 (symmetry), then Equations 2.26 and
2.27 reduce to

ω̇p = I−1{ − ω̃pHp − [0, 0, Is33ω̇s3]
T} ,  (2.28)

and

ω̇s3 = Ls3/I33s (2.29)

where I is now constant (BTIsB = Is) and given as

I =





Ip
11 + Is

11

−Ip
12

−Ip
13

−Ip
12

Ip
22 + Is

22

−Ip
23

−Ip
13

−Ip
23

Ip
33






=





I11

−I12

−I13

−I12

I22

−I23

−I13

−I23

Ip
33






(2.30)

and Hp is greatly simplified to

Hp = Iωp + [0, 0, Is33ωs3] .  (2.31)

Now let T1, T2 be external transverse axis torques, T3 be the internal spin torque applied to the platform, and
Ts

e, Tp
e be respectively external spin torques applied to the rotor and platform. Then expanding Equation 2.31 and

2.28,

I11ω̇p1 = I12ω̇p2 + I13ω̇p3 + I13ωp1ωp2 − I12ωp1ωp3 + [I 22 − Ip
33]ωp2ωp3 + I23[ω2

p2 − ω2
p3] − Is

33ωs3ωp2 + T1 (2.32a)

I22ω̇p2 = I12ω̇p1 + I23ω̇p3 − I23ωp1ωp2 + I12ωp2ωp3 − [I 11 − Ip
33]ωp1ωp3 + I13[ω2

p3 − ω2
p1] + Is

33ωs3ωp1 + T2 (2.32b)

Ip
33ω̇p3 = I13ω̇p1 + I23ω̇p2 + I23ωp1ωp3 − I13ωp2ωp3 + [I 11 − I22]ωp1ωp2 + I12[ω2

p1 − ω2
p2] − Is

33ω̇s3 + Ts
e + Tp

e (2.32c)
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Is
33ω̇s3 = − T3 + Ts

e . (2.32d)

We note in passing that the rotor dynamic imbalance, or wobble, torque is often reintroduced in (2.32) or
(2.34) below by including in torques T1, T2 the terms (obtained from the seventh term in 2.22a and b, or the first
term of 2.21)

[W1, W2]T = − ω2
r (Is

13
2 + Is

23
2)1/2[cos(ωrt − φ), sin(ωrt − φ)]T (2.33a)

with

φ = Tan−1{I s
13/I

s
23} .  (2.33b)

2.1.3 Linearization

To simplify the notation in further reduction of (2.32), we write the platform inertial rate vector as
[ω1, ω2, ω3 + ωp]T, dropping the sub-p, letting the scalar constantωp denote a nominal platform 3-axis rate, andω3

represent deviations from this rate. Also, letωs3 = ωs + ∆ωs, whereωs is the constant nominal value. In Appendix
A the dual-spin equations are linearized allowing non-zero transverse rates. Here we give the simpler case of lin-
earization about [0, 0,ωp] andωs which yields

I11ω̇1 − I12ω̇2 − I13ω̇3 + I12ωpω1 + I11λ1ω2 + 2I23ωpω3 = − I23ω2
p + T1 (2.34a)

I22ω̇2 − I12ω̇1 − I23ω̇3 − I12ωpω2 − I22λ2ω1 − 2I13ωpω3 = I13ω2
p + T2 (2.34b)

Ip
33ω̇3 − I13ω̇1 − I23ω̇2 + I13ωpω2 − I23ωpω1 = − Is

33ω̇s3 + Ts
e + Tp

e (2.34c)

Is
33ω̇s3 = − T3 + Ts

e (2.34d)

where1

λ1 = [I s
33ωs + (Ip

33 − I22)ωp]/I 11 = σ1eωs − (I22/I11)ωp (2.35a)

λ2 = [I s
33ωs + (Ip

33 − I11)ωp]/I 22 = σ2eωs − (I11/I22)ωp . (2.35b)

Substituting (2.34d) into (2.34c), the resultant linear time-invariant system can be written

P(s)−1ω = T (2.36)

where

ω = [ω1, ω2, ω1]T (2.37)

T = [T1 − I23ω2
p, T2 + I13ω2

p, T3 + Tp
e]T (2.38)

and

P(s)−1 =





[I 11s + I12ωp]

−[I 12s + I22λ2]

−[I 13s + I23ωp]

−[I 12s − I11λ1]

[I 22s − I12ωp]

−[I 23s − I13ωp]

−[I 13s − 2I23ωp]

−[I 23s + 2I13ωp]

Ip
33s






. (2.39)

P(s) is the matrix of linearized spacecraft (plant) dynamics. The elements of P are expanded as Eq. 2.40, and a sys-
tem diagram of the complete linearized rigid body dynamics is shown on Figure 2.1. Equation 2.34d has also been
diagramed on Figure 2.1. T3 is the internal 3-axis (despin) torque and all other torques shown are external.

1 Note that forI11 = I22, λ1 = λ2 = σeωs − ωp = σωso − ωp = λo − ωp = H/IT − ωp assuming momen-
tum conservation in the spin axis (3-axis) during platform spinup.
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P11 = {[I 22I
p
33 − I2

23]s
2 − [I 12I

p
33 + I13I23]ωps + 2I213ω2

p}/ ∆ (2.40a)

P12 = {[I 12I
p
33 + I13I23]s

2 − [I p
33I11λ1 + ωp(I2

13 + 2I223)]s + 2I13I23ω2
p}/ ∆ (2.40b)

P13 = {[I 13I22 + I12I23]s
2 − [I 23I11λ1 + ωp(2I23I22 − I12I13)]s − 2ωp[I 13I11λ1 − I12I23ωp]}/ ∆ (2.40c)

P21 = {[I 12I
p
33 + I13I23]s

2 + [I p
33I22λ2 + ωp(2I213 + I2

23)]s + 2I13I23ω2
p}/ ∆ (2.40d)

P22 = {[I 11I
p
33 − I2

13]s
2 + [I 12I

p
33 + I13I23]ωps + 2I223ω2

p}/ ∆ (2.40e)

P23 = {[I 23I11 + I12I13]s
2 + [I 13I22λ2 + ωp(2I13I11 − I12I23)]s − 2ωp[I 23I22λ2 − I12I13ωp]}/ ∆ (2.40f)

P31 = {[I 13I22 + I12I23]s
2 + [I 23I22λ2 + ωp(I23I22 − 2I12I13)]s − ωp[I 13I22λ2 + I12I23ωp]}/ ∆ (2.40g)

P32 = {[I 23I11 + I12I13]s
2 − [I 13I11λ1 + ωp(I13I11 − 2I12I23)]s − ωp[I 23I11λ1 + I12I13ωp]}/ ∆ (2.40h)

P33 = {[I 11I22 − I2
12]s

2 + I11I22λ1λ2 − I2
12ω2

p}/ ∆ (2.40i)

∆(s) = [I 11I22I
p
33 − I11I

2
23 − I22I

2
13 − Ip

33I
2
12 − 2I12I13I23]s

3

+ {I 11I22I
p
33λ1λ2 + ωp[I 11λ1(2I213 + I2

23) + I22λ2(2I223 + I2
13)]

+ ω2
p[2I2

13I11 + 2I223I22 − I2
12I

p
33 − 6I12I13I23]}s

+ 2ω3
p[I 13I23(I11 − I22) + I12(I

2
13 − I2

23)] . (2.40j)

Inverse Laplace transforms of a general plant element for doublet, impulse, step and sinusoidal torque inputs
are respectively tabulated below usingλ2

p = λ1λ2/(1 − r) where r is defined in 2.47 below.

Plant Doublet Response

sPij = [As2 + Bs + C]/[s2 + λ2
p] = A + [Bs + (C − λ2

pA)]/[s2 + λ2
p] (2.41a)

f(t) = Aδ(t) + B cosλpt + [C/λp − λpA] sin λpt (2.41b)

Plant Impulse Response

Pij = [As2 + Bs + C]/[s(s2 + λ2
p)] = A[s/(s2 + λ2

p)] + B[1/(s2 + λ2
p)] + [C/λ2

p][1/s − s/(s2 + λ2
p)] (2.42a)

f(t) = [A − C/λ2
p] cosλpt + [B/λp] sinλpt + C/λ2

p (2.42b)

Plant Step Response

Pij /s = A[1/(s2 + λ2
p)] + [B/λ2

p][1/s − s/(s2 + λ2
p)] + [C/λ2

p][1/s2 − 1/(s2 + λ2
p)] (2.43a)

f(t) = [A/λp − C/λ3
p] sinλpt + [B/λ2

p][1 − cosλpt] + [C/λ2
p]t (2.43b)

Plant Cosine Response

F(s)=




As2 + Bs + C

s(s2 + λ2
p)







s

s2 + ω2



=
As2 + Bs + C

(s2 + λ2
p)(s2 + ω2)

(2.44a)

f(t)(ω2 − λ2
p) = B[cosλpt − cosωt] + [(C − Aλ2

p)/λp] sinλpt − [(C − Aω2)/ω] sinωt (2.44b)

Plant Sine Response

F(s)=




As2 + Bs + C

s(s2 + λ2
p)







ω
s2 + ω2




(2.45a)

f(t)(ω2 − λ2
p) = C[(ω2 − λ2

p)/λ2
pω]u(t) + [(Aλ2

p − C)ω/λ2
p] cosλpt (2.45b)

− [(Aω2 − C)/ω] cosωt + B[(ω/λp) sinλpt − sinωt] .
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The part of the system of most frequent interest is the plant elements which respond to despin torque. This
portion is diagramed separately on Figure 2.2. In analysis of the despin loop usuallyωp = 0 and I12 = 0, (or inten-
sionally by choice of basis). Making these simplifications

I11λ1 = I22λ2 , (2.46)

and the plant elements of Figure 2.2 reduce to

P13 = I22s[I13s − I23λ2]/∆ (2.47a)

P23 = I11s[I23s + I13λ1]/∆ (2.47b)

P33 = I11I22[s
2 + λ1λ2]/∆ (2.47c)

with

∆ = I11I22I
p
33(1 − r)s[s2 + λ1λ2/(1 − r)] = I11I22I

p
33(1 − r)s[s2 + λ2

p] (2.47d)

r = [I 11I
2
23 + I22I

2
13]/I 11I22I

p
33 . (2.47e)

If in addition I11 = I22 = √ I11I22 = IT, thenλ1 = λ2 = λp = λo = Is
33ωs/IT, and corresponding simplifications result is

(2.47). Also we often require the plant dynamics for small linear perturbations in rotor to platform relative rate,ωr,
given by

ωr

T3
=

[ωs − ω3]

T3
= − 1/Is33s − P33 = (2.47f)

P43 = − [I 11I22/I
s
33]{[I

p
33(1 − r) + Is

33]s
2 + [I p

33(1 − r)λ2
p + Is

33λ1λ2]}/ ∆ .

A second case that is significantly simplified results withωp ≠ 0, and imposing transverse inertia symmetry
such that I11 = I22 = IT, and I12 = 0. Thenλ1 = λ2 = λ = H/IT − ωp = λo − ωp, and

P13 = IT{I 13s
2 − I23[λ + 2ωp]s − 2I13λωp}]/ ∆ (2.48a)

P23 = IT{I 23s
2 + I13[λ + 2ωp]s − 2I23λωp}]/ ∆ (2.48b)

P33 = I2
T[s2 + λ2]/∆ (2.48c)

with

∆ = I2
TIp

33(1 − r)s

s2 + [λ2 + r(3λωp + 2ω2

p)]/(1 − r)


= I2
TIp

33(1 − r)s[s2 + λ2
p] .  (2.48d)

The new expressions forλ, λp can be substituted in P43 to get the relative rate plant with platform motion.

2.1.4 Uncoupled Linearized Spin (3-Axis) Dynamics and Despin Motor Model

Figure 2.3 shows a model of the 3-axis (despin) dynamics with motor and bearing dynamics included. Kv, Kf

are motor back emf and viscous friction constants with appropriate units and the motor inductive time constant has
been assumed negligibly small. Tc is the control torque command to the motor and some useful relations for com-
mand and disturbance inputs are tabulated. This model assumes a statically and dynamically balanced rotor and
platform, which is adequate for most preliminary analyses where cross-coupling (nutation, coning, wobble, etc.) is
not considered. When cross-coupling is of interest, it can be shown that the effect of the motor and bearing is
closely approximated by placing the function s/(s+ ωo) between Tc and T3 of Figure 2.2, i.e., the motor-bearing lag
displaces the rigid body pole slightly from the origin. Figure 2.4 shows the model of Figure 2.3 embedded in a typi-
cal spinning sensor referenced despin control structure. In this structure rotor to platform relative rate (or angle) is
measured, say by shaft angle encoder pulses, and fed back in a high bandwidth inner loop through compensation
F1(s). A lower bandwidth outer Lo(s) measures position, perhaps with sun or earth sensor pulses, and closes a posi-
tion control on platform angle. The local loop around Lo is representative of a phase-lock loop that smooths the sen-
sor pulse train.
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Figure 2.3 Model of Motor, Bearing, and Spin Axis Dynamics for Dual-Spin Vehicle.

2.1.5 Dedamper Models

It is frequently useful to model some form of nutation damping or dedamping for analysis or simulation. The
simplest such is to feed back a damping torque proportional to transverse rate, say T1 = K1ω1 = (2/τd)ω1. This par-
ticular model does not conserve angular momentum. The Adams dedamper described next does not conserve
momentum instantaneously, but does conserve it over one spin cycle, or on the average. It is a very simple model
that is efficient and easy to use, and conserve momentum adequately for most applications. It has a structure that
drives energy dissipation to zero in flat spin when nutation angle goes to 90o. The spherical dedamper, originated bu
Kane, is a viscously coupled sphere at the body (rotor in this model) cm that will continue to remove energy in flat
spin if excited.

Adams Dedamper

Recorded here for convenient reference is a frequently useful dedamper/damper model first proposed by Jerry
Adams,

Td = eT
p [T1, T2, Ts

e]T = eT
p (1/τd)[H3/H]2[−H1(H3/H), − H2(H3/H), HT(HT/H)]T (2.49)

= eT
p (1/τd)cos2θn[−H1 cos θn, − H2 cos θn, HT sin θn]T .
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L1 = (1 + ρ)F1P = inner loop transmission with respect θr

L2 = − [ρ/(1 + ρ)][L1/(1 + L1)][Lo/(1 + Lo)] = System open − loop transmission with respect θs

TN1
= θp/N1 = [L1/(1 + ρ)]/[(1 + L1)(1 + L2)]
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− [L1/(1 + ρ)][s + ρ2ωo/(1 + ρ)]}/[(1 + L1)(1 + L2)]

TD3
= θp/D3 = [ρ/(1 + ρ)][P/s][ωo + (L1/Lo)(s + ωo)]/[(1 + L1)(1 + L2)]

Figure 2.4 Decoupled Spin Axis Dynamics and Sampled Spinning
Sensor Control Structure with Phase Lock Loop.

This function is defined such that Td ⋅ H = 0 so a transverse torque normal to H and co-aligned with the current HT

increases this component and a spin down component is applied to the rotor. Conservation of momentum by the
damping torque is shown by

d|H|2

dt
=

d[H ⋅ H]

dt
= 2Ḣ ⋅ H = 2Td ⋅ H = 0 .  (2.50)

Spherical Dedamper

Consider a simple two body system comprising a spacecraft rotor with unconstrained mass properties and a
spherical mass located coincident with the center of mass of the first body. The spherical mass is a
damper/dedamper fixed in position with the rotor and constrained in angular rate by viscous damping. Denote the
damper angular velocity as ωωd, and the relative velocity as νν = ωωd − ωωs. νν = ωωd − (ωωp + ωωr). Then the rotor torque
equation may be written

Ḣs = ∫ r × r̈dm = Js ⋅ ω̇̇ωs + ωωs × Hs = Js ⋅ ω̇̇ωs + ωωs × [Js ⋅ ωωs] = Cdνν + Ts (2.51)

where Cdνν is viscous damper interaction torque. Similarly the damper equation is

Ḣd = Jd ⋅ ω̇̇ωd + ωωd × Hd = Jd ⋅ ω̇̇ωd + ωωd × [Jd ⋅ ωωd] = − Cdνν . (2.52)

Using the diagonal and symmetry properties of the spherical inertia dyadic Jd = eT
s Jdes = JdeT

s Ies where I denotes the
identity matrix, and noting that ωωd × ωωd = 0
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Ḣs = ∫ r × r̈dm = Js ⋅ ω̇̇ωs + ωωs × Hs = Js ⋅ ω̇̇ωs + ωωs × [Js ⋅ ωωs] = Cdνν + Ts (2.51)

where Cdνν is viscous damper interaction torque. Similarly the damper equation is

Ḣd = Jd ⋅ ω̇̇ωd + ωωd × Hd = Jd ⋅ ω̇̇ωd + ωωd × [Jd ⋅ ωωd] = − Cdνν . (2.52)

Using the diagonal and symmetry properties of the spherical inertia dyadic Jd = eT
s Jdes = JdeT

s Ies where I denotes the
identity matrix, and noting that ωωd × ωωd = 0

Ḣd = Jd ⋅ ω̇̇ωd = Jd ⋅ (ω̇̇ωs + ν̇̇ν) = Jd ⋅ (ω̇̇ωp + ω̇̇ωr + ν̇̇ν) = − Cdνν . (2.52)

Since Jd is invariant under orthogonal coordinate transformations we can expand ωωd in any convenient basis.
Extending to three bodies and summing momentum

Ḣ = Ḣp + Ḣs + Ḣd = Ḣp + [Js + Jd] ⋅ ω̇̇ωs + ωωs × [Js ⋅ ωωs] (2.54)

= Ḣp + [Js + Jd] ⋅ ω̇̇ωs + ωωs × [(Js + Jd) ⋅ ωωs] = − Jd ⋅ ν̇̇ν + Ts + Tp

= Ḣp + Is ⋅ ω̇̇ωs + ωωs × [Is ⋅ ωωs] = − Jd ⋅ ν̇̇ν + Ts + Tp

where Is is the inertia dyadic of the combined rotor and damper. Now assigning scalar variables to the elements of ν
and denoting the time derivative with respect to the rotor fixed frame es as with the presuperscript s

νν = eT
s [ν1, ν2, ν3]T ;

s
dνν
dt

= eT
s [ν̇1, ν̇2, ν̇3]T (2.55a)

νν = eT
p [u1, u2, u3]T ;

p
dνν
dt

= eT
s [u̇1, u̇2, u̇3]T (2.55b)

ν̇̇ν =
s
dνν
dt

+ ωωs × νν = eT
s






ν̇1 + ωs2ν3 − ωs3ν2

ν̇2 + ωs3ν1 − ωs1ν3

ν̇3 + ωs1ν2 − ωs2ν1






=
p
dνν
dt

+ ωωp × νν = eT
p






u̇1 + ωp2u3 − ωp3u2

u̇2 + ωp3u1 − ωp1u3

u̇3 + ωp1u2 − ωp2u1






(2.56)

while

ω̇̇ωr =
p
dωωr

dt
+ ωωp × ωωr = eT

p [ωp2ωr, − ωp1ωr, ω̇r]
T =

s
dωωr

dt
+ ωωs × ωωr = eT

s [ωs2ωr, − ωs1ωr, ω̇r]
T . (2.57)

The damper equation (2.52) expands respectively in a rotor or platform basis as

Jd ⋅ (ω̇̇ωs + ν̇̇ν) = eT
s Jd






ω̇s1 + ν̇1 + ωs2ν3 − ωs3ν2

ω̇s2 + ν̇2 + ωs3ν1 − ωs1ν3

ω̇s3 + ν̇3 + ωs1ν2 − ωs2ν1






= − eT
s Cd






ν1

ν2

ν3






(2.58a)

Jd ⋅ (ω̇̇ωp + ω̇̇ωr + ν̇̇ν) = eT
p Jd






ω̇p1 + u̇1 + ωp2(ωr + u3) − ωp3u2

ω̇p2 + u̇2 + ωp3u1 − ωp1(ωr + u3)

ω̇p3 + ω̇r + u̇3 + ωp1u2 − ωp2u1






= − eT
p Cd






u1

u2

u3






. (2.58b)

Note that spherical symmetry of the damping coefficient Cd is implicit in the right side of the last form.

Hence to add the spherical damper to a single body spinner, set Hp = 0, introduce the three damper equations
of (2.58a) and add the first form of Jd ⋅ νν from (2.56) in (2.54). For a dual-spin, if one wishes to operate in platform
coordinates, use the second form of damper equations, (2.58b), augment (2.54) or (2.22a) through c with the second
form of Jd ⋅ νν from (2.56) and repeat the third element of (2.56) as a reaction torque in the fourth equation 2.22d.

An approximate time constant developed by Murphy/Jennings assuming static balance of both bodies and
ωp = u3 = 0 is

τd = −
Is
33(C2

d + λ2
oJ2

d)

Cdωsλs[JdIs
33/IT]2

=
(Is

33/Jd)[1 + (λoτ)2]

τωsλsσ2
, (2.59)

where λo = H/IT, and λs = λo − ωs. In practice one will probably choose Jd and solve for Cd to get the desired time
constant τd as

2.11



Cd =
−τdωsλs[JdI

s
33/IT]2

[2Is
33]



1 ± √ 1 − {[2 λoI

2
T]/[τdωsλsJdI

s
33]}

2 


= − (τd/2)ωsλsI
s
33[Jd/IT]2


1 ± √ 1 − {[2I T]/[τdλsJd]}

2 


. (2.60)

In order that Cd be a real number damper inertia is bounded below as

Jd > Jmin =
2λoI2

T

τdωs|λs|I
s
33

=
2IT

τd|λs|
=

2Is33

τdσ|λs|
(2.61)

and choosing Jd = αJmin gives

Cd =
−τdωsλs[JdIs

33/IT]2

[2Is
33]





α ± √ α2 − 1

α




= − 2α

α ± √ α2 − 1


Is
33[ωs/(τdλs)] , (2.62)

and rather arbitrairly forα = 2,

Cd = − 4[2 ± √3]Is
33[ωs/(τdλs)] . (2.63)
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3.0 Generalizations for Static Imbalance
Static balance on a dual-spin spacecraft means that the body mass centers lie on the bearing axis. This case is

analytically very convenient because the position vectors of the body mass centers with respect to the vehicle cm
r s, rp have only components along the common bearing axis and are therefore fixed in both the rotor and platform.
The equations developed to this point are restricted to this case. We shall find below that if one body only is stati-
cally imbalanced, the torque equations have exactly the same form when written in the unbalanced body, but must
employ a modified inertia formulation to account for the imbalance. This generalization is correct for the full non-
linear time-varying model when only one body has imbalance. When both bodies are statically imbalanced, the sys-
tem is hopelessly time-varying. However, even for this case a small angle linear time-invariant approximation is
obtained by applying approximate sinusoidal imbalance torques. For large angle motion simulation is the approach.

3.1 Addition of Platform Static Imbalance

In Equation 1.3 above,
s
dr s/dt = 0 has been assumed, i.e.,r s is fixed in the rotor basises. Removing this

assumption by allowing a platform static imbalance, the total vehicle cm will be displaced from the bearing axis and
will no longer remain fixed with respect to the rotor. Additional equations are now dev eloped to treat this case.

Repeating the rotor momentum expansion analogous to Eq. 1.3b yields

Hs = ∫ [r s + µµs] × [ ṙ s + µ̇̇µs]dm = Js ⋅ ωωs + msr s × ṙ s (3.1)

= Js ⋅ ωωs − msr s × [r s × ωωs] + msr s ×
s
dr s

dt
= I s ⋅ ωωs + msr s ×

s
dr s

dt
,

where Js, I s are the rotor inertia dyadics with respect to the rotor and vehicle cm, respectively. Inertial time
derivatives are denoteḋv, while

s
dv/dt denotes differentiation with respect to rotor basises. Comparing with Equa-

tion 1.5, it is seen that the
s
dr s/dt term has appeared and, less obvious,I s(t) is no longer fixed ines. Differentiating a

second time to get the rotor torque equation,

Ḣs = ∫ [r s + µµs] × [ r̈ s + µ̈̈µs]dm = Js ⋅ ω̇̇ωs + ωωs × [Js ⋅ ωωs] + msr s × r̈ s

= { Js ⋅ ω̇̇ωs − msr s × [r s × ω̇̇ωs]} + { ωωs × [Js ⋅ ωωs] − msr s × [ωωs × (r s × ωωs)]}

+ {2msr s × [ωωs ×
s
dr s

dt
]} + {msr s ×

s
d2r s

dt2
} (3.2)

= { I s ⋅ ω̇̇ωs} + { ωωs × [I s ⋅ ωωs]} + {
s
dI s

dt
⋅ ωωs + ms[r s × (ωωs ×

s
dr s

dt
) −

s
dr s

dt
× (ωωs × r s)]}

+ {msr s ×
s
d2r s

dt
} .

The brackets in (3.2) indicate sequentially equal terms. This equation is the general expression of the derivative of
rotor momentum when the vehicle cm is not fixed ines, i.e., in the rotor.

Statically Balanced Rotor

Now consider the case where the rotor is statically balanced. When this constraint holds,r s is fixed inep, and
using the definition for the vehicle cm it can be written

r s = − (mp/ms)rp . (3.3)

The inertial derivatives may then be expressed

ṙ s = ωωp × r s (3.4a)

r̈ s = ω̇̇ωp × r s + ωωp × [ωωp × r s] .  (3.4b)

Substituting (3.4b) into the second expression of (3.2),

Ḣs = Js ⋅ ω̇̇ωs + ωωs × [Js ⋅ ωωs] − msr s × [r s × ω̇̇ωp] − msr s × [ωωp × (r s × ωωp)] . (3.5)
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Noting thatrp is fixed inep, the platform momentum is unchanged from the form previously obtained. Thus,
addingḢp to (3.5),

Ḣ = Js ⋅ ω̇̇ωs + ωωs × [Js ⋅ ωωs] + Ip ⋅ ω̇̇ωp − msr s × [r s × ω̇̇ωp] + ωωp × [Ip ⋅ ωωp] − msr s × [ωωp × (r s × ωωp)]

= Js ⋅ ω̇̇ωs + ωωs × [Js ⋅ ωωs] + Îp ⋅ ω̇̇ωp + ωωp × [ Îp ⋅ ωωp] ,  (3.6)

whereJs, Jp are the rotor and platform inertia dyadics with respect to body mass centers, and the platform inertia
dyadic with respect to the vehicle cm,Ip = eT

p[Jp − mpr̃pr̃p]ep, is replaced by

Îp = eT
p[Jp − mpr̃pr̃p − msr̃sr̃s]ep = eT

p[Jp − mp(1 + mp/ms)r̃pr̃p]ep = eT
p[I p − msr̃sr̃s]ep . (3.7)

Note now that (3.7) is identical in form to Eq. 2.3 from which the scalar expansion of (2.22) is eventually obtained.
This is a very pleasing result, as it means that all the previous expanded equations for derivative of total system
momentum can be generalized to the statically balanced rotor and arbitrarily unbalanced platform. This is done by
using in prior equations the rotor inertia dyadic about the rotor cm, Js and thegeneralizedinertia of (3.7) for plat-
form inertia. In particular, Eq. 2.22a-c may be so generalized. Note that the rotor neednot be dynamically bal-
anced.

To obtain the fourth equation necessary to completely describe the four-degree-of-freedom vehicle, we can
equateḢs to the moments applied to the rotor as a free body. Assuming no external forces on the rotor or platform,
the force applied to the rotor by the platform is

Fb = − mpr̈p . (3.8)

Denoting the position vector to the point of force application (the despin bearing center of symmetry) with respect to
the vehicle cm byrb, the moment on the rotor is

Mb = − mprb × r̈p . (3.9)

Equating this to the second form of (3.1) yields

Js ⋅ ω̇̇ωs + ωωs × [Js ⋅ ωωs] − mp[r s − rb] × r̈p = 0 .  (3.10)

Now we are interested only in the 3-axis equation from (3.10). If the rotor is statically balancedr s − rb has only a
3-axis component. Therefore, the last term in (3.10) can make no contribution to the 3-axis equation and indeed the
scalar expansion of (3.10) is given by (2.22d) with Is replaced by Js.

To summarize, for a statically balanced rotor and arbitrary platform, the four vehicle torque equations are
obtained by replacing Is = Js − msr̃sr̃s with Js in (2.22) and replacing

Ip = Jp − mpr̃pr̃p (3.11)

with

Îp = Ip − (m2
p/ms)r̃pr̃p = Jp − mp(1 + mp/ms)r̃pr̃p = Jp − mpr̃pr̃p − msr̃sr̃s (3.12)

in Equations 2.22a through c.

All to the results up to and including (2.40) hold with stated assumptions and substitution of the appropriate
inertia parameters. Equations (2.46) and (2.47) are not in general valid becauseÎ12 ≠ 0 with a statically imbalanced
platform.

It is convenient to note another interpretation ofÎp. The total spacecraft inertia at some relative phase may be
written

I = Jp − mpr̃pr̃p + Js − msr̃sr̃s . (3.13)

Using the definition of vehicle cm

msr s = − mprp (3.14)
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and substituting rs in I yields

Îp = I − Js , (3.15)

hence the augmented platform inertia matrix is the total vehicle inertia about the vehicle cm minus the rotor inertia
about the rotor cm.Also the platform inertia with respect to the rotor cm is Jp − mp(1 + mp/ms)

2 r̃pr̃p ≠ Îp.

The moments that are equated to (3.6) and (3.10) in the presence of platform static imbalance are also altered.
Let xi denote the positions of application with respect to the platform cm of forcesFp

i on the platform, and similarly
yi , Fs

i on the rotor. Also, letTp, Ts represent pure torques applied to the platform and rotor. Then, without supply-
ing details, the torque equations corresponding to (3,6) and (3.10) respectively are

Îp ⋅ ω̇̇ωp + ωωp × [ Îp ⋅ ωωp] + Js ⋅ ω̇̇ωs + ωωs × [Js ⋅ ωωs] = Tp + Ts + Σ[rp + xi ] × Fp
i + Σ[r s + yi ] × Fs

i (3.16)

Js ⋅ ω̇̇ωs + ωωs × [Js ⋅ ωωs] = Ts + Σyi × Fs
i + [r s − rb] × [mpr̈p − (ms/m)ΣFp

i + (mp/m)ΣFs
i ] .  (3.17)

Again, the last term in (3.17) makes no contribution to the 3-axis scalar equation. However, (3.16) has the term
r s × ΣFs

i . Since this term appears in the total momentum derivative (3.16), but not in the rotor component (3.17), it
has the form of an external platform torque (D2 in Figure 2.3, page 2.8) even though it arises from a force on the
rotor.

It is informative to inspect the platform free body torque equation which (3.17) parallels. This equation is

Jp ⋅ ω̇̇ωp + ωωp × [Jp ⋅ ωωp] = Tp + Σxi × Fp
i + [rp − rb] × [msr̈ s − (mp/m)ΣFs

i + (ms/m)ΣFp
i ] .  (3.18)

Here the 1 and 2-axis components ofrp − rb do not vanish when the rotor is statically balanced and the platform is
statically imbalanced. IfΣFp

i = 0, thenΣFs
i = mr̈o, and the last term in (3.18) becomes mp[rb − rp] × [ r̈o + r̈p] which

is, as one should anticipate, the moment due to the platform acceleration force applied at the bearing.

Finally, the momentum change due to a force applied to the rotor of a dual-spin vehicle can be shown to be

∆H = [r s + y] × ∫ Fsdt . (3.19)

For example, if a spin thruster is fired impulsively on a dual-spin vehicle with statically unbalanced platform initially
and finally despun, the rotor spin torque depends upon platform position at the time of firing. Sometimes an unbal-
anced platform will be positioned to get the desired combination of momentum change and radial velocity change
from a radial thrusting maneuver.

3.2 Combined Rotor and Platform Static Imbalance

Let r1, r2 denote the position of rotor and platform mass centers with respect to the vehicle cm when the rotor
is statically balanced. This is consistent with the notation of previous derivations. If we now introduce a rotor static
imbalance by displacing the rotor cm by

re = eT
s [xs, ys, 0]T , (3.20)

the respective position vectors from the vehicle cm to body centers become

r s = (1 − ms/m)re + r1 (3.21)

rp = − (1 − mp/m)re + r2 = − (ms/mp)r s . (3.22)

The geometry is illustrated on Figure 3.1.r1 andr2 are fixed inep, and expressed as

r1 = eT
p[− (1 − ms/m)xp, − (1 − ms/m)yp, zs]

T (3.23)

r2 = eT
p[(1 − mp/m)xp, (1 − mp/m)yp, zp]T = − (ms/mp)r1 . (3.24)
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δcm = (ms/m)re - (mp/m)δp

Figure 3.1a  Dual-Spin Vehicle Mass Model With Platform and Rotor Static Imbalance.

3.4



The angular momentum then may be written for the platform and rotor respectively as (these are identical to Eqs.
1.3a and b)

Hp =
P
∫ (ro + rp + µµp) × ( ṙo + ṙp + µ̇̇µp)dm

= mp(ro + rp) × (ṙo + ṙp) + ∫ µµp × µ̇̇µpdm (3.25)

= mp(ro + rp) × (ṙo + ṙp) + Jp ⋅ ωωp

and

Hs =
R
∫ (ro + r s + µµs) × ( ṙo + ṙ s + µ̇̇µs)dm.

= ms(ro + r s) × (ṙo + ṙ s) + ∫ µµs × µ̇̇µsdm (3.26)

= ms(ro + r s) × (ṙo + ṙ s) + Js ⋅ ωωs

where

ṙ s = ṙ1 + (1 − ms/m)ṙe = ωωp × r1 + (1 − ms/m)ωωs × re (3.27)

ṙp = ṙ2 − (1 − mp/m)ṙe = ωωp × r2 − (1 − mp/m)ωωs × re (3.28)

Expanding the inertial time derivative of momentum yields

Ḣp =
P
∫ (ro + rp + µµp) × ( r̈o + r̈p + µ̈̈µp)dm (3.29)

= mp(ro + rp) × (r̈o + r̈p) + Jp ⋅ ω̇̇ωp + ωωp × [Jp ⋅ ωωp]

= mp[ro × r̈o − (1 − mp/m)ro × r̈e − (1 − mp/m)re × r̈o + ro × r̈2 + r2 × r̈o]

− mp(1 − mp/m)[−(1 − mp/m)re × r̈e + re × r̈2 + r2 × r̈e]

+
P
∫ (r2 + µµp) × ( r̈2 + µ̈̈µp)dm

Ḣs =
R
∫ (ro + r s + µµs) × ( r̈o + r̈ s + µ̈̈µs)dm (3.30)

= ms(ro + r s) × (r̈o + r̈ s) + Js ⋅ ω̇̇ωs + ωωs × [Js ⋅ ωωs]

= ms[ro × r̈o + (1 − ms/m)ro × r̈e + (1 − ms/m)re × r̈o + ro × r̈1 + r1 × r̈o]

+ ms(1 − ms/m)[(1 − ms/m)re × r̈e + re × r̈1 + r1 × r̈e]

+
R
∫ (r1 + µµs) × ( r̈1 + µ̈̈µs)dm

3.5



In equation (3.30)

r̈ s = ω̇̇ωp × r1 + ωωp × (ωωp × r1) + (1 − ms/m)[ω̇̇ωs × re + ωωs × (ωωs × re)]

= ω̇̇ωp × r1 + ωωp × (ωωp × r1) (3.31)

+ (1 − ms/m)[ω̇̇ωp × re +
dpωωr

dt
× re + (ωωp × ωωr) × re + ωωs × (ωωs × re)]

= ω̇̇ωp × re + (1 − ms/m)
dpωωr

dt
× re + ωωp × (ωωp × r1)

+ (1 − ms/m)[(ωωp × ωωr) × re + ωωs × (ωωs × re)]

and similarly forr̈p in (3.29). The last term in each of (3.29) and (3.30) is completely expanded as Eq. 2.22 with
inertias as modified by Eqs. 3.11 and 3.12. Note carefully that Js in the discussion just above Eq. 3.11 is the rotor
inertia about the statically balanced rotor cm (tip ofr1 in Figure 3.1), while Ip is the platform inertia about the vehi-
cle cm point with the rotor statically balanced. Ji is used here for body inertia about body cm.

Taking ro = 0 for the present, we need only expand the terms inre to get the additional torque contributions
due to rotor static imbalance. The torque term containingre in (3.29) and (3.30) are respectively denotedḣ

e
s andḣ

e
p,

and summed to get

ḣ
e = ḣ

e
s + ḣ

e
p = (msmp/m)re × r̈e + ms[re × r̈1 + r1 × r̈e] .  (3.32)

We requirëre andr̈1. First, transformingre to the platform basisep,

re = eT
p[xe, ye, 0]T = eT

p[xs cosψ − ys sinψ, xs sinψ + ys cosψ, 0]T (3.33)

= eT
p√ x2

s + y2
s[cos {ψ + Tan−1(ys/xs)}, sin {ψ + Tan−1(ys/xs)}, 0]T .

Denoting the time derivatives ofre in ep as
dpre

dt
,

dp2re

dt2
, we get

dpre

dt
= eT

pψ̇[−ye, xe, 0]T (3.34)

dp2re

dt2
= eT

p[−ψ̇2xe − ψ̈ye, − ψ̇2ye + ψ̈xe, 0]T . (3.35)

Using

ωωp = eT
p[ω1, ω2, ω3]T , (3.36)

r̈e =
dp2re

dt2
+ ω̇̇ωp × re + 2ωωp ×

dpre

dt
+ ωωp × [ωωp × re] (3.37)

= eT
p






−(ω̇3 − ω1ω2 + ψ̈)ye − (ω2
2 + ω2

3 + ψ̇2 + 2ω3ψ̇)xe

(ω̇3 + ω1ω2 + ψ̈)xe − (ω2
1 + ω2

3 + ψ̇2 + 2ω3ψ̇)ye

(ω̇1 + ω2ω3 + ω2ψ̇)ye − (ω̇2 − ω1ω3 − ω1ψ̇)xe






.

Sincer1 is fixed inep,

r̈1 = ω̇̇ωp × r1 + ωωp × [ωωp × r1] (3.38)

= eT
p






(ω̇2 + ω1ω3)zs + (1 − ms/m)(ω̇3 − ω1ω2)yp + (1 − ms/m)(ω2
2 + ω2

3)xp

−(ω̇1 − ω2ω3)zs − (1 − ms/m)(ω̇3 + ω1ω2)xp + (1 − ms/m)(ω2
1 + ω2

3)yp

−(1 − ms/m)(ω̇1 + ω2ω3)yp + (1 − ms/m)(ω̇2 − ω1ω3)xp − (ω2
1 + ω2

2)zs






.

Next (3.37) and (3.38) are linearized about the operating pointωωp = 0, andψ̇ = ωs (to linearize with the plat-
form spinning is considerably more complex). The accelerations reduce to
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r̈e = eT
p






−yeω̇s − xeω2
s

xeω̇s − yeω2
s

(ω̇1 + ωsω2)ye − (ω̇2 − ωsω1)xe






(3.39)

r̈1 = eT
p






zsω̇2 + yp(1 − ms/m)ω̇3

−zsω̇1 − xp(1 − ms/m)ω̇3

−(1 − ms/m)[ypω̇1 − xpω̇2]






(3.40)

Then expanding (3.32)

ḣ
e = eT

p













ms(mp/m)[(y2
e − 2yeyp)ω̇1 − (xeye − yexp − xeyp)ω̇2

+ (xeye − xeyp)ωsω1 + (y2
e − yeyp)ωsω2] − ms[xezsω̇s − yezsω2

s]

− − − − − − − − − − − − − − − − −
ms(mp/m)[(xeye + xeyp + yexp)ω̇1 − (x2

e + 2xexp)ω̇2

+ (x2
e + xexp)ωsω1 + (xeye + yexp)ωsω2] − ms[yezsω̇s + xezsω2

s]

− − − − − − − − − − − − − − − − −
−ms[xezsω̇1 + yezsω̇2] − ms(mp/m)[(xexp + yeyp)ω̇3

− (x2
e + y2

e − xexp − yeyp)ω̇s + (xeyp − yexp)ω2
s]













(3.41)

These terms (or their unlinearized equivalent) subtract from the right side of (2.22a - c) in the presence of rotor static
imbalance given byre. To get similar terms for (2.22d) we expand the 3-axis term ofḣ

e
s with the result

ḣ
e
3 = − ms(mp/m)[xezsω̇1 + yezsω̇2] + ms(mp/m)2[(x2

e + y2
e − xexp − yeyp)ω̇s

− (xexp + yeyp)ω̇3 − (xeye − yexp)ω2
s] .  (3.41)

Extracting the dominant terms, i.e., proportional toω2
s, from (3.40) and (3.41)

ḣ
e ≈ eT

pmsω2
s






yezs

−xezs

−(mp/m)[xeyp − yexp]






(3.42)

and

ḣ
e
3 ≈ − ms(mp/m)2[xeyp − yexp]ω2

s

= ms(mp/m)(1 − mp/m)[xeyp − yexp]ω2
s − ms(mp/m)[xeyp − yexp]ω2

s (3.43)

= D1 + D3 .

If one substitutes xe and ye form (3.33) in the 1 and 2-axis terms of (3.42) and compares with the seventh term of
Eqs. 2.22a and b, it is observed that rotor static imbalance terms msxszs and msyszs behave, to first-order, identically
as the respective dynamic imbalance terms Is

13 and Is23. Now consider the 3-axis term of (3.42). When rotor and
platform momentum derivatives are summed to get this term, internal torques cancel and external torques remain.
Therefore, this term in (3.42) can be interpreted as an equivalent spin frequency external torque on the rotor, i.e., an
input D3 on Figure 2.3. Then the term of (3.43) can be interpreted as an external torque (D3) plus an internal torque
equivalent to D1 of Figure 2.3. Thus, the despin pointing effect of rotor static imbalance can be obtained to first-
order by multiplying these two torques by the respective closed-loop disturbance transmission functions. Note the
despin disturbance effect vanishes as expected if the platform is statically balanced.

One can further simplify the torque terms of (3.43) by letting

r f = eT
p[xf , yf , 0]T (3.44)

be the platform cm offset from the bearing axis. Then usingre from (3.33) and substituting for xp, yp,

D1 = ms(mp/m)(1 − mp/m)2√ (x2
s + y2

s)(x2
f + y2

f ) ω2
s cos(ψ + ψ1) (3.45)

D3 = D1/(1 − mp/m) , (3.46)
3.7



where

ψ1 = Tan−1{(y syf + xsxf)/(xsyf − ysxf)} = Tan−1{y s/xs} + Tan−1{x f /yf} .  (3.47)

3.3 Multiple Statically Balanced Rotors

A simple extension of the derivation of Section 3.1 allows us to admit multiple statically balanced rotors with
bearing axes coaligned along the 3-axis. It is not necessary that the bearing axes be colocated so long as they are
coaligned. We call the new bodies "rotors" to distinguish them from the one "platform" body that need not be stati-
cally balanced, although the labeling is somewhat arbitrary. Howev er one or more of the new bodies can be despun
or nearly so, as for example the despun solar array of the three body HS394 spacecraft developed at Hughes in the
mid 80’s.

Noting that under addition of more statically balanced rotors (cm on the bearing axis of each respective rotor)
the total vehicle cm remains fixed in the platform as each rotor turns. Hence the torque equations for each of i rotors
become (analogous to Eq. 3.5)

Ḣsi
= Jsi

⋅ ω̇̇ωsi
+ ωωsi

× [Jsi
⋅ ωωsi

] − msi
r si

× [r si
× ω̇̇ωp] − msi

r si
× [ωωp × (r si

× ωωp)] . (3.48)

The derivative of total momentum becomes, similar to Eq. 3.6

Ḣ =
i
Σ 


Jsi

⋅ ω̇̇ωsi
+ ωωsi

× [Jsi
⋅ ωωsi

]


+ Îp ⋅ ω̇̇ωp + ωωp × [ Îp ⋅ ωωp] .  (3.49)

In this casêIp has a correction term for each rotor, becoming

Îp = eT
p Îp ep . = eT

p[I p −
i
Σ msi

r̃si
r̃si

]ep , (3.50)

whereÎp is the generalized platform inertia. A parallel to (3.15) applies using
i
Σ Jsi

.

Now we find that Eqs. 2.22a-c extend to multiple rotors by summing in the terms for each, and the total vehi-
cle torque equations are obtained by collecting these three equations along with one scalar equation of the form in
2.22d for each rotor.

Linearized time invariant equations can be obtained in the platform if every rotor can be approximated as bal-
anced and symmetric. These equations will be identical in form to (2.34) withÎ substituted for I and nutation fre-
quency

λ1 = [
i
Σ Isi

33ωsi
+ (Î

p
33 − Î22)ωp]/I 11 (3.51a)

λ2 = [
i
Σ Isi

33ωsi
+ (Î

p
33 − Î11)ωp]/I 22 (3.51b)

λp = √ λ1λ2 ≈ H/IT − ωp (3.51c)

λo = H/IT =
i
Σ Isi

33ωsi
/IT ; ωp = 0 .  (3.51d)

To express the equations in any rotor one must also approximate the platform as well as all other rotors as balanced
and symmetric. When expressed in rotor i, the approximate equations will have the same form as the simple spinner
or a dual-spin vehicle, but having nutation frequency

λsi
= H/IT − ωsi

= λo − ωsi
. (3.52)
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4.0 Spacecraft Acceleration and Moments
4.1 Acceleration of a Point on the Rotor

Let ro be the inertial position of the vehicle cm andra be the position of a rotor fixed point with respect to the
the cm. Then denoting

R = ro + ra , (4.1)

the second inertial time derivative is

R̈ = r̈o +
s
d2ra

dt2
+ ω̇̇ωs × ra + 2ωωs ×

s
dra

dt
+ ωωs × [ωωs × ra] ,  (4.2)

where

ωωs = eT
s [ωs1, ωs2, ωs3]

T (4.3)

is the inertial angular rate of the rotor basises and
s
dra

dt
denotes time differentiation in this basis. Using

ra = δδ + r1 = eT
p[δ1, δ2, 0]T + eT

s [r1, r2, r3]T

= eT
s [δ1 cosψ + δ2 sinψ + r1, δ2 cosψ − δ1 sinψ + r2, r3]T (4.4)

= eT
s [δs1 + r1, δs2 + r2, r3]T

and expanding

R̈ = r̈o +
s
d2ra

dt2
+ ω̇̇ωs × δδ + 2ωωs ×

s
dra

dt
+ ωωs × [ωωs × δδ]

+ eT
s






ω̇s2r3 − ω̇s3r2 + ωs1ωs2r2 + ωs1ωs3r3 − [ω2
s2 + ω2

s3]r1

ω̇s3r1 − ω̇s1r3 + ωs1ωs2r1 + ωs2ωs3r3 − [ω2
s1 + ω2

s3]r2

ω̇s1r2 − ω̇s2r1 + ωs1ωs3r1 + ωs2ωs3r2 − [ω2
s1 + ω2

s2]r3






(4.5)

where we have takenr1 fixed ines and the unexpanded terms, exceptingr̈o, are present only in the case of a platform
static imbalance resulting in vehicle cm offsetδδ. The effect of rotor static imbalance is fixed in the rotor and
included inr1 if present.

It is sometimes convenient to expressR̈ in terms of platform inertial rates in the platform basisep instead of
rotor rates as above, i.e.,

ωωp = eT
p[ωp1, ωp2, ωp3]

T . (4.6)

The relative rate is

ωωr = eT
p[0, 0, ψ̇]T = eT

s [0, 0, ψ̇]T , (4.7)

whereψ (ωrt for constant rotor rate) is the relative phase. The rotor rate is then

ωωs = ωωp + ωωr = eT
s






ωs1

ωs2

ωs3






= eT
s






ωp1 cosψ + ωp2 sinψ
ωp2 cosψ − ωp1 sinψ

ωp3 + ψ̇






. (4.8)
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The inertial derivative is

ω̇̇ωs = ω̇̇ωp +
s
dωωr

dt
+ ωωp × ωωr

= eT
s






ω̇s1

ω̇s2

ω̇s3






= eT
s






(ω̇p1 + ψ̇ωp2) cosψ + (ω̇p2 − ψ̇ωp1) sinψ
(ω̇p2 − ψ̇ωp1) cosψ − (ω̇p1 + ψ̇ωp2) sinψ

ω̇p3 + ψ̈






, (4.9)

and substitution of (4.8) and (4.9) in (4.5) yields the acceleration of a rotor point in terms of platform angular rates
and accelerations. Equation 4.5 is valid for a point either in the rotor or platform provided the angular rate of the
appropriate body is substituted andra is with respect to the correct basis. A solution frequently used is the accelera-
tion due to small angle sinusoidal motions. Letr̈o = s

dra/dt = 0, and

ωωs = eT
s [ωo cosλst, ωo sinλst, ω3]T . (4.10)

Then the first-order acceleration is

R̈ ≈ r̈a ≈ eT
s






ωo(λs + ω3)r3 cosλst − ω2
3r1

ωo(λs + ω3)r3 sinλst − ω2
3r2

ωo(ω3 − λs){r 1 cosλst + r2 sinλst}






. (4.11a)

For nutation frequencyλs = (σ − 1)ωs, andω3 = ωs, yielding

R̈ ≈ r̈a ≈ eT
s







ωoωs






σr3 cosλst

σr3 sinλst

(2 − σ){r 1 cosλst + r2 sinλst}






− ω2
s






r1

r2

0












, (4.11b)

where ωo = σωsθn is the nutation transverse rate magnitude. For large angle nutation of magnitude

tanθn = √ H2
1 + H2

2/H3, the axial acceleration on a symmetric vehicle is found from 4.5 as

a3 = σ(2 − σ)ω2
s tanθn√ r2

1 + r2
2 cos(λst − Tan−1r2/r1) − σ2ω2

sr3 tan2 θn . (4.11c)

Now we return to expand the platform static imbalance terms from Eq. 4.5, viz.,

2ωωs ×
s
dr a

dt
= eT

s 2





ωs2δ̇s3 − ωs3δ̇s2

ωs3δ̇s1 − ωs1δ̇s3

ωs1δ̇s2 − ωs2δ̇s1






= eT
s 2ψ̇






ωs3[δ1 cosψ + δ2 sinψ]

ωs3[δ2 cosψ − δ1 sinψ]

−ωs1[δ1 cosψ + δ2 sinψ] − ωs2[δ2 cosψ − δ1 sinψ]






, (4.12)

s
d2ra

dt2
= eT

s ψ̈[δ2 cosψ − δ1 sinψ, − δ1 cosψ − δ2 sinψ, 0]T

+ eT
s ψ̇2[−δ1 cosψ − δ2 sinψ, δ1 sinψ − δ2 cosψ, 0]T , (4.13)
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ωωs × [ωωs × δδ] = eT
s






ωs1ωs2δs2 − [ω2
s2 + ω2

s3]δs1

ωs1ωs2δs1 − [ω2
s1 + ω2

s3]δs2

ωs1ωs3δs1 + ωs2ωs3δs2






= eT
s






ωs1ωs2[δ2 cosψ − δ1 sinψ] − [ω2
s2 + ω2

s3][δ1 cosψ + δ2 sinψ]

ωs1ωs2[δ1 cosψ + δ2 sinψ] − [ω2
s1 + ω2

s3][δ2 cosψ − δ1 sinψ]

ωs1ωs3[δ1 cosψ + δ2 sinψ] + ωs2ωs3[δ2 cosψ − δ1 sinψ]






, (4.14)

and

ω̇̇ωs × δδ = eT
s






−ω̇s3[δ2 cosψ − δ1 sinψ]

ω̇s3[δ1 cosψ + δ2 sinψ]

ω̇s1[δ2 cosψ − δ1 sinψ] − ω̇s2[δ1 cosψ + δ2 sinψ]






. (4.15)

The preceding four components may be collected to get the total acceleration due to platform static imbalanceδδ.
Doing so for the 3-axis (spin) only and using the symbol∂a3 to denote the additive acceleration component induced
by platform static imbalance, we obtain

∂a3 = − (2ψ̇ − ωs3){[ ωs1δ1 + ωs2δ2] cosψ + [ωs1δ2 − ωs2δ1] sinψ}

+ ω̇s1[δ2 cosψ − δ1 sinψ] − ω̇s2[δ1 cosψ + δ2 sinψ] .  (4.16)

Assuming a balanced symmetric platform, while admitting rotor asymmetry, the nutation rates

ωωs = eT
s [ωo cosλst, ηωo sinλst, ωs]

T , (4.17)

obtain, where the factor

η = √ [I 11(I
s
33 − I11)]/[I 22(I

s
33 − I22)] (4.18)

arises from rotor asymmetry(see Appendix C). The axial acceleration component is

∂a3 = − (2ψ̇ − ωs)ωo{[ δ1 cosλst + ηδ2 sinλst] cosψ + [δ2 cosλst − ηδ1 sinλst] sinψ} (4.19)

− ωoλs sinλst[δ2 cosψ − δ1 sinψ] − ηωoλs cosλst[δ1 cosψ + δ2 sinψ] .

= − (2ψ̇ − ωs)ωo{[ δ1cos(λst + ψ) + δ2sin(λst + ψ)] + (1 − η)[δ1 sinλst sinψ − δ2 sinλst cosψ]}

−ωoλs{[ δ1cos(λst + ψ) + δ2sin(λst + ψ)] − (1 − η)[δ1 cosλst cosψ + δ2 cosλst sinψ]}

= − (2ψ̇ − ωs)ωo{[ δ1cos(λst + ψ) + δ2sin(λst + ψ)] + (1 − η)[δ1 sinψ − δ2 cosψ]sinλst}

−ωoλs{[ δ1cos(λst + ψ) + δ2sin(λst + ψ)] − (1 − η)[δ1 cosψ + δ2 sinψ]cosλst}

= − (2ψ̇ + λs − ωs)ωo{[ δ1cos(λst + ψ) + δ2sin(λst + ψ)]}

− (1 − η)ωo{(2ψ̇ − ωs)[δ1 sinψ − δ2 cosψ]sinλst − λs[δ1 cosψ + δ2 sinψ]cosλst}

= − (2ψ̇ + λs − ωs)ωo{[ δ1cos(λst + ψ) + δ2sin(λst + ψ)]}

+ (1 − η)ωo


(2ψ̇ − ωs + λs){ δ1/2cos(λst + ψ) + δ2/2cos(λst + ψ)}

− (2ψ̇ − ωs − λs){ δ1/2cos(λst − ψ) − δ2/2cos(λst − ψ)} 


Thus the combined effects of platform static imbalance and rotor asymmetry produces acceleration at frequencies
λs ± ωr, which for a despun platform reduces toλo = σωs (inertial nutation frequency) and (2− σ)ωs. Magnitude
and frequencies are tabulated below.
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For an asymmetric platform the transverse rates are derived in Section 5.5 and have the form

ωωs = eT
s ωo[ν1 cos {λst + β1} − ν2 cos {(λp + ωs)t + β2}, ν1 sin {λst + β1} + ν2 sin {(λp + ωs)t + β2}, ωs/ωo]T . (4.20)

Here the platform asymmetry coefficients are ν1 = A/ωo = AI11/T1 ≈ (1 + √⎯ ⎯⎯⎯⎯I11/I22)/2,
ν2 = B/ωo = BI11/T1 ≈ (1 − √⎯ ⎯⎯⎯⎯I11/I22)/2, where A, B are developed in Sect 5.5. Expanding the axial acceleration

∂a3 = − (2ψ̇ − ωs)ωoν1

⎧
⎨
⎩
[δ1 cos {λst + β1} + δ2 sin {λst + β1}]cosψ + [δ2 cos {λst + β1} − δ1 sin {λst + β1}]sinψ

⎫
⎬
⎭

− ωoλsν1

⎧
⎨
⎩
sin {λst + β1}[δ2 cos ψ − δ1 sin ψ] + cos {λst + β1}[δ1 cos ψ + δ2 sin ψ]

⎫
⎬
⎭

+ (2ψ̇ − ωs)ωoν2

⎧
⎨
⎩
[δ1 cos {(λp + ωs)t + β2} − δ2 sin {(λp + ωs)t + β2}] cos ψ

+ [δ2 cos {(λp + ωs)t + β2} + δ1 sin {(λp + ωs)t + β2}] sin ψ
⎫
⎬
⎭

+ (λp + ωs)ωoν2

⎧
⎨
⎩
sin {(λp + ωs)t + β2}[δ2 cos ψ − δ1 sin ψ] − cos {(λp + ωs)t + β2}[δ1 cos ψ + δ2 sin ψ]

⎫
⎬
⎭

= − (2ψ̇ − ωs + λs)ωoν1[δ1 cos {λst + ψ + β1} + δ2 sin {λst + ψ + β1}] (4.21)

+ (2ψ̇ − 2ωs − λp)ωoν2[δ1 cos {(λp + ωs)t − ψ + β2} − δ2 sin {(λp + ωs)t − ψ + β2}]

The resultant frequencies are again tabulated below.

Table 4.1 Axial Acceleration Frequency and Magnitude Induced by Nutation.

Source Frequency Magnitude

Nutation λs = λo − ωs = (σ − 1)ωs θnro(ωs − λs)λo = θnro(2 − σ)σω2
s

Rotor Asymmetry λs θn[r2
1(ωs − ηλs)

2 + r2
2(ηωs − λs)

2]1/2λo

Platform Asymmetry λs θnν1ro(ωs − λs)λo

λp + ωs θnν2ro(λp + 2ωs)λo

Platform Static Imbalance λo = σωs θnδλ2
o

Rotor Asymmetry and λs + ωr θn(δ/2)(1 − η)(2ωr − ωs + λs)λo

Platform Static Imbalance λs − ωr θn(δ/2)(1 − η)(2ωr − ωs − λs)λo

Platform Asymmetry and λs + ωr θnν1δ(2ωr − ωs + λs)λo

Platform Static Imbalance λp + ωs − ωr θnν2δ(2ωr − 2ωs + λp)λo

Support or 
Gimbal Point

Figure 4.1  Appendage Mass Model.

Spacecraft cm

Gimbaled Body cm

mp, Jp

  R = Jp - mp(1 - mp/m)x x 

QT = Jp + mpx r2
~ ~
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m

r2
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4.2 Appendage Support Moments (Despin Bearing Bending Moments)
Let ro be the position of the vehicle cm with respect to an inertial point,r2 be the position of the

platform cm with respect to the vehicle cm, andx be the position of the despin bearing center of symme-
try (platform support point) with respect to the platform cm. The two bearings apply forcesF1, F2 to the
platform at points∆x1, ∆x2 respectively displaced from the symmetry point. Then

Ḣp = ∫ [ro + r2 + µp] × [ r̈o + r̈2 + µ̈p]dm = ∫ µp × µ̈pdm + mp[ro + r2] × [ r̈o + r̈2]

= ∫ µp × µ̈pdm + mpr2 × r̈2 + mp[r2 × r̈o + ro × r̈2 + ro × r̈o]

= Jp ⋅ ω̇̇ωp + ωωp × [Jp ⋅ ωp] + mpr2 × r̈2 + mp[r2 × r̈o + ro × r̈2 + ro × r̈o] , (4.22)

and if r2 is fixed in the platform basisep (rotor statically balanced),̇Hp simplifies to

Ḣp = Ip ⋅ ω̇̇ωp + ωωp × [Ip ⋅ ωp] + mp[r2 × r̈o + ro × r̈2 + ro × r̈o] . (4.23)

Here we denote inertia dyadics with respect to platform and spacecraft cm respectively asJp andIp. The
moments on the platform are

Mp = [ro + r2 + x + ∆x1] × F1 + [ro + r2 + x + ∆x2] × F2

= [ro + r2 + x] × [F1 + F2] + ∆x1 × F1 + ∆x2 × F2 (4.24)

= [ro + r2 + x] × [F1 + F2] + Mb ,

whereMb contains the bending moments about the 1 and 2-axes as well as the despin torque. Assuming
F1, F2 are the only forces on the platform, such thatF1 + F2 = mp[ r̈2 + r̈o], and equatinġHp to Mp, the bend-
ing moments become the transverse components of

Mb = Jp ⋅ ω̇̇ωp + ωωp × [Jp ⋅ ωωp] − mpx × [ r̈o + r̈2] . (4.25)

Although the description refers to support moments for the entire despun platform, the model applies
equally well to any appendage. Defining

r2 = y − x , (4.26)

the moments may be rewritten

Mb = Jp ⋅ ω̇̇ωp + ωωp × [Jp ⋅ ωp] + mpr2 × r̈2 − mp[y × r̈2 + x × r̈o] , (4.27)

and withr2 fixed inep

Mb = Ip ⋅ ω̇̇ωp + ωωp × [Ip ⋅ ωωp] − mp[y × r̈2 + x × r̈o] . (4.28)

Taking

ωωp = eT
p[ω1, ω2, ω3]T (4.29)

y = eT
p[y1, y2, y3]T , (4.30)

andr2 fixed inep as

r2 = eT
p[r1, r2, r3]T , (4.31)

the moment components expand as

M1 = + [I p
11 − mp(y2r2 + y3r3)]ω̇1 − [I p

12 − mpy2r1]ω̇2 − [I p
13 − mpy3r1]ω̇3

− [I p
13 − mpy3r1]ω1ω2 + [I p

12 − mpy2r1]ω1ω3 + [I p
33 − Ip

22 + mp(y3r3 − y2r2)]ω2ω3 (4.32a)

− [mp(y3r2 − y2r3)]ω2
1 − [I p

23 − mpy2r3]ω2
2 + [I p

23 − mpy3r2]ω2
3

M2 = − [I p
12 − mpy1r2]ω̇1 + [I p

22 − mp(y1r1 + y3r3)]ω̇2 − [I p
23 − mpy3r2]ω̇3

+ [I p
23 − mpy3r2]ω1ω2 + [I p

11 − Ip
33 + mp(y1r1 − y3r3)]ω1ω3 − [I p

12 − mpy1r2]ω2ω3(4.32b)
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+ [I p
13 − mpy1r3]ω2

1 + [mp(y3r1 − y1r3)]ω2
2 − [I p

13 − mpy3r1]ω2
3

M3 = − [I p
13 − mpy1r3]ω̇1 − [I p

23 − mpy2r3]ω̇2 + [I p
33 − mp(y1r1 + y2r2)]ω̇3

+ [I p
22 − Ip

11 + mp(y2r2 − y1r1)]ω1ω2 − [I p
23 − mpy2r3]ω1ω3 + [I p

13 − mpy1r3]ω2ω3 (4.32c)

− [I p
12 − mpy1r2]ω2

1 + [I p
12 − mpy2r1]ω2

2 + [mp(y1r2 − y2r1)]ω2
3

Note that the expansion can be evaluated with elements ofJp by substitutingJp
ij for Ip

ij andxi for yi.

For small motion of a despun platform appendage elimination of second-order terms yields
r̈2 ≈ ω̇̇ωp × r2 and

Mb ≈ Ip ⋅ ω̇̇ωp − mpy × (ω̇̇ωp × r2) − mpx × r̈o = Jp ⋅ ω̇̇ωp − mpx × (ω̇̇ωp × r2) − mpx × r̈o

= QT ⋅ ω̇̇ωp − mpx × r̈o (4.33)

where

QT = Ip + mpỹr̃2 = Jp − mpr̃2r̃2 + mpỹr̃2 = Jp + mpx̃r̃2 . (4.34)

Expansion of the elements of the matrixQT is given as the rate derivative coefficients of the detailed
expansion in (4.28) above.

Letting

ωωp = eT
p[ωo cosλpt, ωo sinλpt, ω3]T

ω̇̇ωp = eT
pλpωo[− sinλpt, cosλpt, 0]T ,

whereωo is sufficiently small that second-order terms may be neglected, the moments are:

M1 = ωo[ω3{I p
33 − Ip

22 + mp(y3r3 − y2r2)} − λp{I p
11 − mp(y2r2 + y3r3)}] sin λpt

+ ωo[(ω3 − λp){I p
12 − mpy2r1}] cosλpt + [I p

23 − mpy3r2]ω2
3 (4.35a)

M2 = ωo[ω3{I p
11 − Ip

33 + mp(y1r1 − y3r3)} + λp{I p
22 − mp(y1r1 + y3r3)}] cosλpt

+ ωo[(λp − ω3){I p
12 − mpy1r2}] sin λpt − [I p

13 − mpy3r1]ω2
3 (4.35b)

M3 = ωo[(ω3 − λp){I p
13 − mpy1r3} sin λpt − (ω3 + λp){I p

23 − mpy2r3} cosλpt]

+ [mp(y1r2 − y2r1)]ω2
3 . (4.35c)

For the simple case where the platform is despun,ω3 = 0, both platform and rotor are statically balanced,
andIp

12 = 0,

M1 = − ωoλp[I p
11 − mpy3r3] sinλpt = − ωoλpQ11 sinλpt (4.36a)

M2 = ωoλp[I p
22 − mpy3r3] cosλpt = ωoλpQ22 cosλpt (4.36b)

M3 = − ωoλp[I p
13 sinλpt + Ip

23 cosλpt] = ωoλp[Q13 sinλpt + Q23 cosλpt] . (4.36c)

Lastly, if the platform is symmetric,Ip
11 ≈ Ip

22 ≈ √ Ip
11I

p
22 = Ip

T, the net moment is constant and equal to

M = √ M2
1 + M2

2 = ωoλp[I p
T − mpy3r3] = θnλ2

p[I p
T − mpy3r3] = θnλ2

pQ11 . (4.37)

Note when external forces are applied to the vehicle thex × r̈o term from (4.24) must also be added
to the moment. Also note that the equations derived can be applied to determine the restraint moments to
hold any appendage with mass center atr2 and attach pointy.
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4.3 Linearized Motion Induced by Combined Rotor Static and Dynamic Imbalance

The purpose of this derivation is to describe the trajectory of a point on the despun platform of a dual-spin
spacecraft in the presence of combined rotor static and dynamic imbalance. Further, we wish to determine the
torques acting along the gimbal axis of a gimbaled appendage on the despun platform. Extracting first-order
dynamic imbalance torque terms from (2.22) and static imbalance torque terms from (3.42) expressed in the despun
platform basisep

B = eT
p






B1

B2

B3






= eT
p






−ω2
s[Js

23 cosψ + Js
13 sinψ]

+ω2
s[Js

13 cosψ − Js
23 sinψ]

0






+ eT
pmsω2

s






yezs

−xezs

−(mp/m)[xeyp − yexp]






(4.38)

= eT
p






−ω2
s[Js

23 cosψ + Js
13 sinψ]

+ω2
s[Js

13 cosψ − Js
23 sinψ]

0






+ eT
pmsω2

s






zs(ys cosψ + xs sinψ)

−zs(xs cosψ − ys sinψ)

−(mp/m)[(ypxs − xpys)cosψ − (ypys + xpxs)sinψ]






= eT
pω2

s






−[Js
23 − zsysms]cosψ − [Js

13 − zsxsms]sinψ
+[Js

13 − zsxsms]cosψ − [Js
23 − zsysms]sinψ

−ms(mp/m)rfre[sin(φp − φs)cosψ − cos(φp − φs)sinψ]






= eT
pω2

s






−Is
23 cosψ − Is

13 sinψ
+Is

13 cosψ − Is
23 sinψ

Is
12 cosψ + Is

33 sinψ






= eT
pω2

s







−√ (Is
13)2 + (Is

23)2cos(ψ − φ)

√ (Is
13)2 + (Is

23)2sin(ψ − φ)

√ (Is
12)2 + (Is

33)2sin(ψ − φs + φp)







where

φd = Tan−1[I s
13/I

s
23] ; φs = Tan−1[ys/xs] ; φp = Tan−1[yp/xp] .  (4.39)

It is evident from above that transverse torques on the platform can be nulled by cancellation of static and dynamic
imbalances of the rotor by setting

zsxsms = Js
13 ; zsysms = Js

23 (4.40)

or alternatively stated, by nulling the rotor products of inertia seen from the spacecraft cm.

The approach here is to replace the imbalance with forces and torques on a balanced spacecraft which induce
the same platform motion. We assert that the platform small displacement motion is the superposition of coning
motion induced by the transverse imbalance torques and cylindrical translation induced by static imbalance. The
torques are given by 4.38. Taking I12 = ωp = 0 and

∆p = I11I22I
p
33(1 − r) (4.41)

and expanding from (2.40, 44, and 45), the platform angular rates are

ωp1(t) = ωs





[I 22I
p
33 − I2

23]

∆p(1 − σ2)




[I s

13 cosψ − Is
23 sinψ] + ωs





[σ1I11I
p
33]

∆p(1 − σ2)




[I s

13 cosψ − Is
23 sinψ] (4.42a)

+ ωs





[σ1I23I
p
11]

∆p(1 − σ2)




[I s

12 cosψ + Is
33 sinψ]
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ωp2(t) = ωs





[I 11I
p
33 − I2

13]

∆p(1 − σ2)




[I s

13 sinψ + Is
23 cosψ] + ωs





[σ2I22I
p
33]

∆p(1 − σ2)




[I s

13 sinψ + Is
23 cosψ] (4.42b)

− ωs





[σ2I13I
p
22]

∆p(1 − σ2)




[I s

12 cosψ + Is
33 sinψ]

ωp3(t) = ωs





I23I11(1 + σ1)

∆p(1 − σ2)




[I s

13 sinψ + Is
23 cosψ] + ωs





I13I22(1 + σ2)

∆p(1 − σ2)




[I s

13 cosψ − Is
23 sinψ] (4.42c)

− ωs





I11I22(1 − σ2)

∆p(1 − σ2)




[I s

33 cosψ − Is
12 sinψ]

ωp1(t) ≈ ωs





{[I 22I
p
33 − I2

23] + [σ1I11I
p
33]}

∆p(1 − σ2)




[I s

13 cosψ − Is
23 sinψ] (4.43a)

ωp2(t) ≈ ωs





{[I 11I
p
33 − I2

13] + [σ2I22I
p
33]}

∆p(1 − σ2)




[I s

13 sinψ + Is
23 cosψ] (4.43b)

ωp3(t) ≈ − ωs





I11I22(1 − σ2)

∆p(1 − σ2)




[I s

33 cosψ − Is
12 sinψ] (4.43c)

ω̇p1(t) = − ω2
s





{[I 22I
p
33 − I2

23] + [σ1I11I
p
33]}

∆p(1 − σ2)




[I s

13 sinψ + Is
23 cosψ] (4.44a)

≈ − ω2
s





1

I11(1 − σ)




[I s

13 sinψ + Is
23 cosψ] ≈ − ω2

s[θw2 sinψ + θw1 cosψ]

ω̇p2(t) = ω2
s





{[I 11I
p
33 − I2

13] + [σ2I22I
p
33]}

∆p(1 − σ2)




[I s

13 cosψ − Is
23 sinψ] (4.44b)

≈ ω2
s





1

I22(1 − σ)




[I s

13 cosψ − Is
23 sinψ] ≈ ω2

s[θw2 cosψ − θw1 sinψ] .

ω̇p3(t) ≈ ω2
s





I11I22(1 − σ2)

∆p(1 − σ2)




[I s

33 sinψ + Is
12 cosψ] ≈ ω2

s





1

Ip
33




[I s

33 sinψ + Is
12 cosψ] .  (4.44c)

The response of a platform mounted axial accelerometer is simply

a3(t) = ω̇p1(t)r2 − ω̇p2(t)r1 ≈ − ω2
s{r 2[θw2 sinψ + θw1 cosψ] + r1[θw2 cosψ − θw1 sinψ]} , (4.45)

and clearly measurement of magnitude and phase of this acceleration yields the composite imbalance quantities
Is
13, Is23 and no information to separate static and dynamic imbalance.

On Figure 3.1b is a representation of the cylindrical coning motion where it is illustrated that in the absence of
torques the platform cm, and every point on the platform, traces a circle of radius (ms/m)re = (1 − mp/m)re while the
rotor traces a circle of radius (1− ms/m)re. Hence, a spacecraft with statically balanced rotor requires a rotor fixed
radial force applied at the vehicle cm of magnitude msω2

sre to induce this cylindrical coning motion. Deducing from
the sketch of Figure 3.1b, the platform cm position trajectory is

r = − eT
p(ms/m)[xs cosψ − ys sinψ, ys cosψ + xs sinψ, 0]T (4.46)

= − eT
p(ms/m)re[cos(ψ + φs), sin(ψ + φs), 0]T ; φs = Tan−1[ys/xs] .
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from which we deduce the equivalent force required on a spacecraft with statically balanced rotor as

f = mr̈ = eT
pmsω2

sre[cos(ψ + φs), sin(ψ + φs), 0]T . (4.47)

Note that this force depends only on the static imbalance components and does not influence the axial acceler-
ation measurement described above. Again consider the torques about the gimbal axis of an appendage. The plat-
form transverse angular rates and derivatives thereof may be applied in Eq. 4.32 to evaluate appendage support
torques induced by our pseudo torque. Next the expression (ma/m)x × f (see 4.25) yields the reaction torques due to
the pseudo forcef. The the vector component sum of these torques along the gimbal axis yields the gimbal reaction
torque that must be supplied to hold the appendage fixed. In symbolic form this is repeated from (4.28) as

Mb = Ia ⋅ ω̇a + ωa × [Ia ⋅ ωa] − may × r̈2 − (ma/m)x × f , (4.48)

where we use the sub a to denote the appendage under study. All terms ofMb projected on the gimbal axis can not
be computed from the composite imbalance terms measured with the accelerometer. Hence, measurement of the
appendage gimbal reaction or more practically the gimbal relative angle excursions yields the totalMb from which
the x × f term can be separated and used to isolate the static imbalance components introduced separately by the
pseudo force.

Now note that small values of dynamic and/or static imbalance will result in small linear range motion. A
good approximation of the small angle behavior of the appendage can be obtained by assuming it is fixed to the plat-
form, calculating the internal dynamic disturbance torque, and then applying the torque transmission of any appro-
priate gimbal control loop. When we linearize (4.47) and assumeωa = ωp, the result is

Mb = Ia ⋅ ω̇p − may × r̈2 − (ma/m)x × f = Ja ⋅ ω̇p − max × r̈2 − (ma/m)x × f = eT
p[M1, M2, M3]T (4.49)

= eT
p






[I a
11 − ma(y2r2 + y3r3)]ω̇1 − [I a

12 − may2r1]ω̇2 − [I a
13 − may3r1]ω̇3 + (ma/m)x3f2

−[I a
12 − may1r2]ω̇1 + [I a

22 − ma(y1r1 + y3r3)]ω̇2 − [I a
23 − may3r2]ω̇3 − (ma/m)x3f1

−[I a
13 − may1r3]ω̇1 − [I a

23 − may2r3]ω̇2 + [I a
33 − ma(y1r1 + y2r2)]ω̇3 − (ma/m)[x1f2 − x2f1]






= eT
p






[Ja
11 − ma(x2r2 + x3r3)]ω̇1 − [Ja

12 − max2r1]ω̇2 − [Ja
13 − max3r1]ω̇3 + (ma/m)x3f2

−[Ja
12 − max1r2]ω̇1 + [Ja

22 − ma(x1r1 + x3r3)]ω̇2 − [Ja
23 − max3r2]ω̇3 − (ma/m)x3f1

−[Ja
13 − max1r3]ω̇1 − [Ja

23 − max2r3]ω̇2 + [Ja
33 − ma(x1r1 + x2r2)]ω̇3 − (ma/m)[x1f2 − x2f1]






.

Expanding in terms of the imbalance induced angular rate and force solutions

M1 = − ω2
s





Ja
11 − ma(x2r2 + x3r3)

I11(1 − σ)




[I s

13 sinψ + Is
23 cosψ] − ω2

s





Ja
12 − max2r1

I22(1 − σ)




[I s

13 cosψ − Is
23 sinψ] (4.50a)

− ω2
s





Ja
13 − max3r1

Ip
33




[I s

33 sinψ + Is
12 cosψ] + (ma/m)x3f2

= − ω2
s√ (Is

13)2 + (Is
23)2[a11cos(ψ − φ) + a12sin(ψ − φ)]

− ω2
smp(ms/m)rfrea13sin(ψ − φs + φp) + ω2

s(msma/m)x3resin(ψ + φs)

= − ω2
s√ (Is

13)2 + (Is
23)2√ a2

11 + a2
12cos(ψ − φ − φ1)

− ω2
s(msrezs)(mp/m)(rf /zs)a13sin(ψ − φs + φp) + ω2

s(msrezs)(ma/m)(x3/zs)sin(ψ + φs)

= − ω2
s√ (Js

13)2 + (Js
23)2√ a2

11 + a2
12cos(ψ − φd − φ1) + ω2

s(mszsre)√ a2
11 + a2

12sin(ψ + φs + φ1)

− ω2
s(msrezs)(mp/m)(rf /zs)a13sin(ψ − φs + φp) + ω2

s(msrezs)(ma/m)(x3/zs)sin(ψ + φs)

= − ω2
s{Js

13a11 − Js
23a12 − msxszs[a11 + (ma/m)(x3/zs)] + msyszsa12 + (msrezs)(mp/m)(rf /zs)a13cos(φp − φs)} sin ψ

− ω2
s{Js

13a12 + Js
23a11 − msxszsa12 − msyszs[a11 + (ma/m)(x3/zs)] − (msrezs)(mp/m)(rf /zs)a13sin(φp − φs)} cosψ
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M2 = ω2
s





Ja
12 − max1r2

I11(1 − σ)




[I s

13 sinψ + Is
23 cosψ] + ω2

s





Ja
22 − ma(x1r1 + x3r3)

I22(1 − σ)




[I s

13 cosψ − Is
23 sinψ] (4.50b)

− ω2
s





Ja
23 − max3r2

Ip
33




[I s

33 sinψ + Is
12 cosψ] − (ma/m)x3f1

= ω2
s√ (Is

13)2 + (Is
23)2[a21cos(ψ − φ) + a22sin(ψ − φ)]

− ω2
smp(ms/m)rfrea23sin(ψ − φs + φp) + ω2

s(msma/m)x3recos(ψ + φs)

= ω2
s√ (Js

13)2 + (Js
23)2√ a2

21 + a2
22cos(ψ − φ − φ2) + ω2

s(mszsre)[a21sin(ψ + φs) + a22cos(ψ + φs)]

− ω2
smp(ms/m)rfrea23sin(ψ − φs + φp) + ω2

s(msma/m)x3recos(ψ + φs)

M3 = ω2
s





Ja
13 − max1r3

I11(1 − σ)




[I s

13 sinψ + Is
23 cosψ] − ω2

s





Ja
23 − max2r3

I22(1 − σ)




[I s

13 cosψ − Is
23 sinψ] (4.50c)

− ω2
s





Ja
33 − ma(x1r1 + x2r2)

Ip
33




[I s

33 sinψ + Is
12 cosψ] − (ma/m)[x1f2 − x2f1]

= ω2
s√ (Is

13)2 + (Is
23)2[a31cos(ψ − φ) − a32sin(ψ − φ)]

− ω2
smp(ms/m)rfrea33sin(ψ − φs + φp) + ω2

s(msma/m)re√ x2
1 + x2

2cos(ψ + φs − λ3)

= ω2
s√ (Js

13)2 + (Js
23)2√ a2

31 + a2
32cos(ψ − φ − φ3) − ω2

smszsre√ a2
31 + a2

32sin(ψ + φs + φ3)

− ω2
smp(ms/m)rfrea33sin(ψ − φs + φp) + ω2

s(msma/m)re√ x2
1 + x2

2cos(ψ + φs − λ3)

where we have defined the geometric parameter phase angles as

λ3 = − Tan−1[x1/x2] ; φ1 = Tan−1[a12/a11] ; φ2 = Tan−1[a22/a21] ; φ3 = − Tan−1[a32/a31] .  (4.50d)

We hav e gone somewhat to extremes in manipulating the Mi in different forms in order to show explicitly terms in
total spacecraft dynamic imbalance Is

ij due to rotor static and dynamic contributions, rotor dynamic imbalance Js
ij ,

and static imbalance terms re and rf respectively for rotor and platform static imbalance. We hav e already observed
in (4.45) that only the composite dynamic imbalance with respect to the vehicle cm, Iij is identifyible in the platform
axial acceleration. In the second form of M1 we may observe the potential separation of static and dynamic terms.
Note the importance of the vehicle cm to rotor cm axial offset parameter zs. As zs increases the vehicle dynamic
imbalance contributed by rotor static imbalance msrezs increases, while the translation term due to f2 and the, per-
haps already second-order, platform static imbalance term mprerf remain fixed. Similar remarks apply to the com-
panion torques M2, M3. Hence, for sufficiently large zs the latter terms become negligible in the gimbal torque and
the rotor static and dynamic imbalance are inseparable by measuring axial acceleration and gimbal torque or point-
ing. Next consider the case of no rotor dynamic imbalance. Then the ratio of torque due to offset terms to torque
induced by dynamic imbalance at the vehicle cm is

ω2
s(ms/m)re√ (mprfa13)2 + (max3)2

ω2
s(mszsre)√ a2

11 + a2
12

=
(1/m)√ (mprfa13)2 + (max3)2

zs√ a2
11 + a2

12

.

The denominator term is indistinguishable from dynamic imbalance and in practical cases will tend to dominate.

We next wish to investigate the behavior of pointing error induced in a gimbaled payload by the imbalance
components. The roll M1 component of error should be representative. Consider a simplified case where we con-
sider only the the imbalance in a single plane, the 1-3 plane. Then the last form of M1 in (4.50a) reduces to
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M1 = − ω2
s{Js

13a11 − msxszs[a11 + (ma/m)(x3/zs) − (mp/m)(xp/zs)a13]} sin ψ (4.51)

− ω2
s{Js

13a12 − msxszs[a12 + (mp/m)(yp/zs)a13]} cosψ

= − ω2
s{Js

13a11 − Ĵ
s
13[a11 + (ma/m)(x3/zs) − (mp/m)(xp/zs)a13]} sin ψ

− ω2
s{Js

13a12 − Ĵ
s
13[a12 + (mp/m)(yp/zs)a13]} cosψ

= − ω2
s{Js

13a11 − Ĵ
s
13[a11 + b1]} sin ψ − ω2

s{Js
13a12 − Ĵ

s
13[a12 + b2]} cosψ

If the magnitude of the sinusoidal gimbal torque |M1| is held constant the pointing disturbance will be constant.
Forming this with spin speed normalized to unity

M2
1 = {Js

13a11 − Ĵ
s
13(a11 + b1)} 2 + {Js

13a12 − Ĵ
s
13(a12 + b2)} 2 (4.52)

Substitute x= Ĵ
s
13 and y= Js

13, such that

[(a11 + b1)2 + (a12 + b2)2]x2 − 2[a11(a11 + b1) + a12(a12 + b2)]xy + [a2
11 + a2

12]y
2 = M2

1 . (4.53)

This is the equation of a skewed ellipse centered at the origin of the x,y plane. Specifying a value for |M1| is equiv-
alent to specifying a bound for sinusoidal pointing error induced by the 1-3 components of static and dynamic bal-
ance. The pointing error bound will be satisfied when the balance parameters are within the ellipse. Recall that the
pointing error is a spin frequency sinusoid. Then balance errors in the orthogonal 2-3 plane produce pointing errors
that are 90o in time phase from the 1-3 plane contribution.

Consider an ellipse with major and minor axes aligned with a u,v coordinate basis described as

(u − uo)2

a2
+

(v − vo)2

b2
= 1 .

Rotating to a skewed basis



u

v



=




x cosφ − y sinφ
y cosφ + x sinφ





(x cosφ − y sinφ − uo)2

a2
+

(y cosφ + x sinφ − vo)2

b2
= 1 ,

and manipulating, we get the new form

x2 cos2 φ − 2xysinφ cosφ + y2 sin2 φ − 2uo(x cosφ − y sinφ) + u2
o

a2

+
y2 cos2 φ + 2xysinφ cosφ + x2 sin2 φ − 2vo(y cosφ + x sinφ) + v2

o

b2

= [(cosφ/a)2 + (sinφ/b)2]x2 + [(sinφ/a)2 + (cosφ/b)2]y2 + 2sinφ cosφ[(1/b2) − (1/a2)]xy

− 2[(vo/b2)sinφ + (uo/a2)cosφ]x − 2[(vo/b2)cosφ − (uo/a2)sinφ]y + (uo/a)2 + (vo/b)2

= e1x2 + e2y2 + e3xy + e4x + e5y + e6 = 1 ,

where e23 − 4e1e2 < 0 is required for an ellipse. Then equating coefficients

e1 = [(cosφ/a)2 + (sinφ/b)2] = [(a11 + b1)2 + [(a12 + b2)2]/M2
1 (4.54a)

e2 = [(sinφ/a)2 + (cosφ/b)2] = [a2
11 + a2

12]/M
2
1 (4.54b)

e3 = 2sinφ cosφ[(1/b2) − (1/a2)] = − 2[a11(a11 + b1) + a12(a12 + b2)]/M2
1 (4.54c)

e4 = − 2[(vo/b2)sinφ + (uo/a2)cosφ] = 0 (4.54d)

4.11



e5 = − 2[(vo/b2)cosφ − (uo/a2)sinφ] = 0 (4.54e)

e6 = (uo/a)2 + (vo/b)2 = 0 .  (4.54f)

Simultaneous solution of these nonlinear equations will yield the pointing error ellipse parameters. Excluding
numerical solutions, this is a formidable set of equations to solve, but after a thwarted week of no-wind windsurfing
on the North Shore of Maui we have happened upon the following solution. Note that the first three equations inde-
pendently yield a, b, and φ. Also for out particular case, the last three require uo = vo = 0. Solving the first two for
1/a2 and 1/b2 respectively

1

a2
=

e1

cos2 φ
−

tan2 φ
b2

=
⎡
⎢
⎣

cos2 φ
cos2 φ − sin2 φ

⎤
⎥
⎦
[e1 − e2 tan2 φ] =

e1 − e2 tan2 φ
1 − tan2 φ

(4.55a)

1

b2
=

e2

cos2 φ
−

tan2 φ
a2

=
⎡
⎢
⎣

cos2 φ
cos2 φ − sin2 φ

⎤
⎥
⎦
[e2 − e1 tan2 φ] =

e2 − e1 tan2 φ
1 − tan2 φ

(4.55b)

tan 2φ =
sin 2φ
cos 2φ

= e3/[e2 − e1] =
⎡
⎢
⎣

e3

[e2
3 + (e2 − e1)2]1/2

⎤
⎥
⎦

⎡
⎢
⎣

[e2
3 + (e2 − e1)2]1/2

e2 − e1

⎤
⎥
⎦

. (4.55c)

Application of appropriate trigonometric identities gives

tan2 φ =
[e2

3 + (e2 − e1)2]1/2 − (e2 − e1)

[e2
3 + (e2 − e1)2]1/2 + (e2 − e1)

; 1 − tan2 φ =
2(e2 − e1)

[e2
3 + (e2 − e1)2]1/2 + (e2 − e1)

(4.56)

which may be used to complete the closed-form solution for ellipse axes a and b. Summarizing,

a2 = 2/{(e2 + e1) − [e2
3 + (e2 − e1)2]1/2} (4.57a)

b2 = 2/{(e2 + e1) + [e2
3 + (e2 − e1)2]1/2} (4.57b)

φ = (1/2)Tan−1{e3/[e2 − e1]} ; e2
3 − 4e1e2 < 0  (4.57c)

uo = + a2[e5 sin φ − e4 cos φ]/2 (4.57d)

vo = − b2[e5 cos φ + e4 sin φ]/2 ; e6 = [e2
4 + e2

5]/4 . (4.57e)

Since the appendage pointing variation is fixed at spin frequency, the appendage pointing control loop trans-
mission can be used to scale the required pointing bound to an admissible torque |M1|. This combined with vehicle
and appendage mass properties provides the ellipse on the plane of static versus dynamic imbalance in the rotor 1-3
plane. Imbalance in the 2-3 rotor coordinate plane will produce a disturbance torque that is similarly a spin fre-
quency sinusoid that will be time phased 90o from the 1-3 plane effect. Being sinusoids, the two pointing error com-
ponents will combine in root sum square fashion.

Figure 4.2  Definition of Ellipse Geometry.

uo

yo

vo

v

y

u

x

φ

xo

b

a

4.12



In the analysis we have derived the roll torque M1 that would be applied to a roll gimbal or payload elevation
control. For a more general case it is a straightforward application of the above to get all three components of torque
and the projection of this vector on the pointing gimbal axis. We alert the reader also that the derivation of torques
assumes the gimbal angle is fixed which will result in an approximate solution, but does not detract from the insight
provided by the solution.

On Hughes dual-spin spacecraft the rotor mounted telescoping solar drum is frequently used for rotor balanc-
ing. This is depicted on Figure 4.3. The telescoping drum is attached to the rotor by three rack and pinion deploy-
ment mechanisms at 120o intervals on the periphery of the rotor. The rotor balance is adjusted by differentially
extending one or two deployment mechanisms to tilt the drum as shown. On the figure we have defined geometric
parameters and listed the sensitivity of static balance Δr2 and dynamic balance J23 and I23 with respect to rotor and
vehicle cm respectively.

Spacecraft cm

md, Jd

Principal Axis

Pivot Axis 
(Rotor Fixed)

Solar Drum

m

es3

2

ms - md θ

β
α

r2

ms

zs

 d2 

R = 2d1/3 
 d1 

δ

d

z

h

Figure 4.3  Balance Concept Geometry and Sensitivity for Tilting Solar Drum on Dual-Spin Spacecraft.
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5.0 Selected Solutions of the Dual-Spin Spacecraft Equations
5.1 Steady State Response to Rotor Dynamic Imbalance

5.1.1 Dual-Spin

Let the platform and rotor rates spin beωp3 = ωp, ωs with corresponding rotor to platform relative rate spin
ωr = ωs − ωp. Then assuming a symmetric rotor,∆Is = Is

22 − Is
11 = 0, and Ip12 = 0, the linearized transverse axis

torque equations (Eqs. 2.22a and b) in a platform fixed basis become: (platform also balanced)

I11ω̇p1 + I11λ1ωp2 = − [I s
23 cosωrt + Is

13 sinωrt]ω2
s (5.1a)

I22ω̇p2 − I22λ2ωp1 = [I s
13 cosωrt − Is

23 sinωrt]ω2
s . (5.1b)

Solving for the steady state platform angular rates





ωp1

ωp2





=
ω2

s

I11I22(ω2
r − λ2

p)





[I 22ωr + I11λ1][I s
13 cosωrt − Is

23 sinωrt]

[I 11ωr + I22λ2][I s
23 cosωrt + Is

13 sinωrt]





(5.2)

→
− ωs

Is
33

2 − I11I22





(I22 + Is
33)[I

s
13 cosωst − Is

23 sinωst]

(I11 + Is
33)[I

s
23 cosωst + Is

13 sinωst]





; ωp → 0 .

Transforming to the rotor basis via Eq. 1.10 withψ = ωrt, and defining

∆Ip = Ip
22 − Ip

11 = I22 − I11 , (5.3)

yields the rotor rates as





ωs1

ωs2





=
ω2

s/2

I11I22(ω2
r − λ2

p)





Is
13[(I 22 + I11)ωr + I11λ1 + I22λ2] + ∆Ipωr[I

s
13cos2ωrt − Is

23sin2ωrt]

Is
23[(I 22 + I11)ωr + I11λ1 + I22λ2] − ∆Ipωr[I

s
23cos2ωrt + Is

13sin2ωrt]





(5.4)

→
− ωs

2[Is
33

2 − I11I22]





Is
13[I 11 + I22 + 2Is33] + ∆IpIs

13 cos 2ωst − ∆IpIs
23 sin 2ωst

Is
23[I 11 + I22 + 2Is33] − ∆IpIs

23 cos 2ωst − ∆IpIs
13 sin 2ωst





; ωp → 0 .

The first term is the familiar constant rotor rate due to dynamic imbalance. The second term is a twice spin fre-
quency disturbance induced by platform asymmetry.

The 3-axis acceleration at a point

r = eT
s [r1, r2, r3]T (5.5)

on the rotor is given by the 3-axis scalar equation of (4.5) as

a3 = r2ω̇s1 − r1ω̇s2 + (r1ωs1 + r2ωs2)ωs − r3(ω2
s1 + ω2

s2) .  (5.6)

Substituting the above transverse rates in a3 gives

a3 =
(r1Is

13 + r2Is
23)[(I 11 + I22)ωr + I11λ1 + I22λ2]ω3

s

2I11I22(ω2
r − λ2

p)
(5.7)

−
3∆Ipω3

sωr

2I11I22(ω2
r − λ2

p)
[(r2Is

23 − r1Is
13) cos 2ωrt + (r2Is

13 + r1Is
23) sin 2ωrt]

→
−(r1Is

13 + r2Is
23)(I11 + I22 + 2Is33)ω2

s

2[Is
33

2 − I11I22]
+

3∆Ipω2
s√ r2

1 + r2
2√ Is

13
2 + Is

23
2

2[Is
33

2 − I11I22]
cos(2ωst − γ) ; ωp → 0 ,

with

γ = Tan−1[(r2Is
13 + r1Is

23)/(r2Is
23 − r1Is

13)] . (5.8)
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The magnitude of the constant component of transverse rate is

θwωs =
ω2

s/2[(I22 + I11)ωr + I11λ1 + I22λ2]√ Is
13

2 + Is
23

2

I11I22(ω2
r − λ2

p)
→

ωs(I11 + I22 + 2Is33)√ Is
13

2 + Is
23

2

2[Is
33

2 − I11I22]
(5.9)

whereθw is the wobble angle or the displacement of the principal axis of inertia from the bearing axis. Approximat-
ing I11 ≈ I22 ≈ IT, giv es the rotor imbalance wobble angle as

θw ≈ √ Is
13

2 + Is
23

2

IT − Is
33

= √ Is
13

2 + Is
23

2

IT(1 − σ)
. (5.10)

Then the acceleration may be written

a3 ≈ ao +




3roω2
s∆Ip

2(Is33 + IT)




θw cos(2ωst − γ) .  (5.11)

Hence, the twice spin rate component is proportional to imbalance magnitude. The two components of imbalance
can be determined by correlating the phase of this signal with some spin phase reference, e.g., a sun sensor. Note
the dc component of acceleration

ao ≈
(r1Is

13 + r2Is
23)ω2

s

IT − Is
33

(5.12)

senses only the component of imbalance in the plane containing the spin axis and the radial line to the accelerome-
ter. The dc acceleration will also contain a first-order corrupting term due to instrument misalignment. Hence, mea-
surement of ao is usually not a feasible way to detect imbalance.

5.1.2 All Spun

For a single spinning body with I12 = 0, the linearized torque equations are:

I11ω̇s1 + (I33 − I22)ωsωs2 = I23ω2
s (5.13a)

I22ω̇s2 − (I33 − I11)ωsωs1 = − I13ω2
s . (5.13b)

These result in steady state transverse rates





ωs1

ωs2





= ωs





I13/(I11 − I33)

I23/(I22 − I33)





(5.14)

and linearized acceleration

a3 = [r1I13/(I11 − I33) + r2I23/(I22 − I33)]ω2
s , (5.15)

and for I11 ≈ I22 ≈ √ I11I22 = IT

a3 ≈ [r1I13 + r2I23]ω2
s/(IT − I33)] . (5.16)

Computing the steady state angular momentum

H = I[ωs1, ωs2, ωs]
T = [H1, H2, H3]T , (5.17)

the wobble or spin axis tilt is found as

θw = Tan−1[√ H2
1 + H2

2/H3] ≈ Tan−1[√ H2
1 + H2

2/I33ωs]

= Tan−1√ {I 13/(I11 − I33)}
2 + {I 23/(I22 − I33)}

2 . (5.18)

Approximating transverse inertia symmetry and small tilt angle, respectively

θw = Tan−1[√ I13
2 + I23

2/(IT − I33)] ≈ √ I13
2 + I23

2/(IT − I33)] . (5.19)
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5.1.3 Wobble on a Multiple Rotor Vehicle

Here we develop a simple approximation for wobble of a multiple rotor vehicle where a dynamic imbalance
product of inertia exists on one rotor. The development draws on the multiple rotor equations of Section 3.3 and is
somewhat intuitive; therefore, awaits a rigorous development or verification by simulation. Using Eq. 3.49 and the
expansion of Eq. 2.22c we get angular rate terms only for the 1-axis torque equation as

− Σ Iiωiω2 + I22ω2ωs − I23ω2
s = 0 .

This equation is expressed in the unbalanced rotor having product I23 and spin rateωs. All remaining bodies
are assumed balanced and symmetric, and in steady spin we assume angular accelerations vanish in the unbalance
rotor. The constant transverse rate in this body due to dynamic unbalance is then

ω2 =
ωsI23

I22 − Σωi /ω2
=

ωsI23

IT − ΣIiωi /ωs
=

ωsI23

IT − H/ωs
=

ωsI23

IT(1 − λo/ωs)
= θw ωs ,

where transverse inertia symmetry is approximated when IT is introduced. As is now well-known for dual-spin vehi-
cles, it is clearly desirable to avoid a body spin rate approaching inertial nutation frequency. Further note that having
the transverse rate in the spinning unbalanced body, constant in that body, the transverse rate in any other rotor or
platform will be sinusoidal with the same magnitude and at relative rate. Acceleration at a point is straightforward
using the resultant transverse rate.

5.2 Closed-Loop Response to Rotor Dynamic Imbalance

Open-loop response to rotor dynamic imbalance (wobble) was calculated for the steady-state in the above. In
this section a technique for approximating the closed-loop response to imbalance is developed for the steady state
case.

The dominant rotor imbalance torque terms from Eq. 2.22a and b are:

eT
p





T1(t)

T2(t)





= eT
p





− Is
23 cosωst − Is

13 sinωst

Is
13 cosωst − Is

23 sinωst




ω2

s (5.20)

= eT
pω2

s√ Is
13

2 + Is
23

2




− cos {ωst − φ}

sin {ωst − φ}





where

φ = Tan−1{I s
13/I

s
23} .  (5.21)

The phase is inconsequential to calculation of the steady state response, thus transforming:

eT
p





T1(s)

T2(s)





= eT
pω2

s√ Is
13

2 + Is
23

2 { − s/ωs, − 1}T{ ωs/(s
2 + ω2

s)} . (5.22)

To calculate vehicle response, these torques are approximated as external forcing torques. It is convenient to express
the two constrained components of torque as a single input in terms of the average rigid body open-loop wobble
angle.

θw = √ Is
13

2 + Is
23

2/{ √ I11I22 − Is
33} = √ Is

13
2 + Is

23
2/{I T(1 − σ)} . (5.23)

The resultant single input representation is shown as Figure 5.1. The plant matrix is given by Equation 2.40, where

ω = P(s)T . (5.24)
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T2

T1

Figure 5.1  Rotor Imbalance Equivalent Torque Input Structure.

ωs
2[IT(1 - σ)] Teθw

-s/ωs

-1

Letting M and F be respectively the measurement and feedback matrices, the system open-loop transmission is:

L = PG/s + PFM/s . (5.25)

Substituting

T = − FMθ + Fθc + Te = − Gθ + Fθc + Te (5.26)

in ω, using θ = ω/s, and solving

ω = {I + L}−1P[Fθc + Te] (5.27)

in the system as diagrammed in Figure 5.2. Although perhaps tedious, the calculation of any variable response to
imbalance torques is now straightforward. One approach used by this writer to avoid the extensive algebra in calcu-
lating ω above is to evaluate P, F, and G numerically and perform the manipulations and inversions numerically on a
computer.

θc

θ̂

Figure 5.2  Closed-Loop Representation of Dual-Spin Vehicle with Control.

1
sPFΣ Σ

M

Te

T ω θ
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5.3 Equivalence of Bearing Misalignment and Rotor Imbalance

Position offset and/or angular misalignment of the despin bearing of a dual-spin vehicle is entirely indistin-
guishable from, or equivalent to imbalance. The geometry of bearing axis errors is depicted on Figure 5.3. Here we
note that an offset δ results in static imbalance δms and angular misalignment of the bearing axis produces both
static and dynamic imbalance components.

Figure 5.3  Imbalance Components Induced by Bearing Misalignment.

ms

mp

m

es

ep

3

2

2

3

δ

θ

θd

rs d 

Employing the geometry of the figure, the static and dynamic imbalance components are respectively (arbitrarily
assuming components are in the 2-3 plane)

S = (δ − dθ)ms

Ĵ
s
23 = [Js

33 − J22]θ

Combining these components and translating to the vehicle cm, the equivalent dynamic imbalance about the vehicle
cm becomes

Î
s
23 = δrsms + [Js

33 − Js
22 − drsms]θ .
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5.4 Coning Response to Constant Rate Rotation of an Imbalanced Platform

Assume a dynamically and statically balanced and symmetric rotor, a coordinate basis chosen so I12 = 0, and
constant platform rotation rateωp(ω3 = 0). Eqs. 2.34a and b may be solved for steady state platform rates inep,
yielding

ωωp = eT
p[ω1, ω2, ω3]T = eT

pωp[−ωpI13/λ2I22, − ωpI23/λ1I11, 1]T (5.28)

whereλ1, λ2 are nutation frequency components given by (2.35a and b). The resultant vehicle angular momentum is

H = eT
p[H1, H2, H3]T = eT

p






−ωpI13[ωpI11/λ2I22 + 1]

−ωpI23[ωpI22/λ1I11 + 1]

Ip
33ωp + Is

33ωs + ω2
p[I 2

13/λ2I22 + I2
23/λ1I11]






(5.29)

and the cone angle is obtained as

θc = Tan−1[√ H2
1 + H2

2 /H3] .  (5.30)

Approximating the platform transverse inertias equal as I11 ≈ I22 ≈ IT = √ I11I22 ; λ1 = λ2 = λ, and the
momentum simplifies to

H = eT
p






−ωpI13[ωp/λ + 1]

−ωpI23[ωp/λ + 1]

Ip
33ωp + Is

33ωs + (ω2
p/λIT)[I 2

13 + I2
23]






(5.31)

while the cone angle becomes closely

θc ≈ Tan−1[(ωp/λ + 1)ωp√ I2
13 + I2

23] /[I p
33ωp + Is

33ωs] (5.32)

= Tan−1{[ ωp√ I2
13 + I2

23 ] /λIT} = Tan−1[√ ω2
1 + ω2

2 /ωp] .

If the coning momentum is small, momentum is approximately conserved on the spin axis during spinup, i.e.,
Is
33ωso = Is

33ωs + Ip
33ωp. This results inλ = (Is

33/IT)ωso − ωp = σωso − ωp, and a reduction of the cone angle to

θc = Tan−1{[ √ I2
13 + I2

23 /IT][ωp/(σωso − ωp)]} . (5.33)

Transforming the platform rate to the rotor basises and computing the 3-axis coning acceleration at a rotor fixed
point r = eT

s [r1, r2, r3]T assumingω1, ω2 constant gives (from Eq. 4.5)

a1 = − r3(ψ̇ − ωs)[ω1 cosψ + ω2 sinψ] − r2ω̇s − r1ω2
s (5.34a)

− ω1(r1ω1 + r2ω2) sin2 ψ − ω2(r1ω2 − r2ω1) cos2 ψ − (r2ω2
1 − r2ω2

2 − 2r1ω1ω2) sinψ cosψ

a2 = r3(ψ̇ − ωs)[ω2 cosψ − ω1 sinψ] + r1ω̇s − r2ω2
s (5.34b)

− ω2(r1ω1 + r2ω2) sin2 ψ + ω1(r1ω2 − r2ω1) cos2 ψ − (r1ω2
1 − r1ω2

2 + 2r2ω1ω2) sinψ cosψ

a3 = (ψ̇ + ωs)[(r1ω2 − r2ω1) sinψ + (r2ω2 + r1ω1) cosψ] − r3(ω2
1 + ω2

2). (5.34c)

The constant and twice relative frequency terms are second-order inωi which is proportional to despun product of
inertia over total transverse inertia. Hence, in most applications these can be neglected, and substituting for the
angular rates, the accelerations reduce to

a1 ≈ r3ω2
p(ψ̇ − ωs)[(I 13/λ2I22) cosψ + (I23/λ1I11) sinψ] − r2ω̇s − r1ω2

s (5.35a)

a2 ≈ r3ω2
p(ψ̇ − ωs)[(I 13/λ2I22) sinψ − (I23/λ1I11) cosψ] + r1ω̇s − r2ω2

s (5.35b)

a3 ≈ ω2
p(ψ̇ + ωs){[r 2I13/λ2I22 − r1I23/λ1I11] sinψ − [r1I13/λ2I22 + r2I23/λ1I11] cosψ}. (5.35c)

Sinceψ̇ = ωs − ωp the first two terms are approximately proportional toω3
p while the last term is proportional to

ω2
p(2ωs − ωp). During platform superspin maneuvers it is sometimes convenient to setωs = ωp/2 to allow the rotor

mounted accelerometer to display nutation without corruption by platform coning. By a proper choice of vector
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basis the magnitude of relative rate sinusoidal axial acceleration a3(t) reduces to

ac = (2ωs − ωp)ωproθc . (5.36)

The above results are correct for a statically unbalanced platform provided the appropriate generalized inertia
from Eq. 3.13 is employed, however; the acceleration expansion does not include the effect of the resultant vehicle
cm offset due to platform static imbalance. Four additional acceleration terms arise due to this effect and these are
identified in Eq. 4.5 and expanded in Eqs. 4.12 through 4.15. The additional spin axis(3-axis) term for imbalanced
platform coning has been expanded and found to reduce quite simply toωp[ω1δ1 + ω2δ2], whereω1, ω2 are the plat-
form coning rates andδ1, δ2, are thevehicleradial cm offset dimensions.
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5.5 Free (Nutation) Response to a Transverse Torque Impulse with Asymmetric Unbalanced Platform

Consider the torque impulse response for a dual-spin vehicle with balanced and symmetric rotor, despun plat-
form (ωp = 0), and platform basisep chosen such that I12 = 0. Then the dynamics as given by Eq. 2.40 apply and
from (2.35), (2.47d and e) platform nutation frequency is

λ2
p = λ1λ2/(1 − r) = (Isωs)

2/{I 11I22(1 − r)}. (5.36)

We apply a torque impulse T1 ft-lb-sec about the 1-axis (or equivalently the initial condition T1 = I11ω1(0)) and
compute the response. From (2.40)

P11 = [I 22I
p
33 − I2

23]s
2/∆ (5.37a)

P21 = [I 13I23][s + I22I
p
33λ2/I13I23]s/∆ (5.37b)

P31 = [I 13I22][s + I23λ2/I13]s/∆ (3.37c)

with ∆ given by (2.47d). Applying the impulse and inverting the transform, the platform rates inep are

ω1 = T1[{I 22I
p
33 − I2

23}/ ∆′] cosλpt = acosλpt (5.38a)

= {(b + a)/2− (b − a)/2} cosλpt

ω2 = T1[{I 22I
p
33λ2/λp}/ ∆′] sinλpt + T1[{I 13I23}/ ∆′] cosλpt = b sinλpt + α cosλpt (5.38b)

= {(b + a)/2+ (b − a)/2} sinλpt + α cosλpt

ω3 = T1[{I 22I13}/ ∆′] cosλpt + T1[{I 23I22λ2/λp}/ ∆′] sinλpt (5.38c)

= ccosλpt + d sinλpt

where a, b, c, d, andα are now defined and

∆′ = I11I22I
p
33(1 − r) . (5.39)

For completeness and easy reference we also invert P12, P22, P32 to get the response to a torque inpulse T2 as

ω1 = T2[{I 13I23}/ ∆′] cosλpt − T2[{I 11I
p
33λ1/λp}/ ∆′] sinλpt

ω2 = T2[{I 11I
p
33 − I2

13}/ ∆′] cosλpt

ω3 = T2[{I 11I23}/ ∆′] cosλpt − T2[{I 13I11λ1/λp}/ ∆′] sinλpt .

Integrating the rates for T1

λpθ1 = a sinλpt (5.40a)

λpθ2 = b(1 − cosλpt) + α sinλpt .  (5.40b)

We consider the balanced case briefly. The motion of the platform spin axis is as shown by Figure 5.4a below.
For this case r = 0, and the motion describes an ellipse given by

(λpθ1)2/a + (λpθ2 − b)2/b = 1 ,  (5.41)

with

b/a= λ2/λp = √ I11/I22 . (5.42)

If we applied the same torque impulse about the 2-axis, the resultant ellipse is symmetric about the 2-axis with
major axis T2/√ I11I22 along the 2-axis and minor axis T2/I22 parallel and above the 1-axis of Figure 5.4a as shown by
the dashed path. Study of the drawing and the preceding discussion reveals that the nutation ellipse always has one
axis of length T/√ I11I22 along the momentum change vector, and this is the minor axis when torque is applied to the
minimum inertia, and the major axis when torque is applied to the maximum inertia.
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λpθ2 

Figure 5.4  Spin Axis Motion Due to Impulse T1 for I22 > I 11.
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If the platform is unbalanced in the plane of the impulse only the same motion results. If it is unbalanced in
both planes a more complex motion occurs which is an ellipse traced about a moving center and has the general
appearance of an ellipse with axes rotated in the basis ep as indicated by the example of Figure 5.4b.

Next, using (1.10) to transform the rate to the rotor basis es, and denoting rotor nutation frequency as
λs = λp − ωs = (σ − 1)ωs, the rotor rates are

ωs1 = b cos λst − (b − a) cos λpt cos ωst + α cos λpt sin ωst (5.43a)

= {(b + a)/2} cos λst − (α/2)sinλst − {(b − a)/2} cos {(λp + ωs)t} + (α/2) sin {(λp + ωs)t}

= A cos(λst + β1) − B cos {(λp + ωs)t + β2}

ωs2 = a sin λst + (b − a) sin λpt cos ωst + α cos λpt cos ωst (5.43b)

= {(b + a)/2} sin λst + (α/2)cosλst + {(b − a)/2} sin {(λp + ωs)t} + (α/2) cos {(λp + ωs)t}

= A sin(λst + β1) + B sin {(λp + ωs)t + β2}

where

2A = √⎯ ⎯⎯⎯⎯⎯⎯⎯⎯(b + a)2 + α2 (5.44a)

2B = √⎯ ⎯⎯⎯⎯⎯⎯⎯⎯(b − a)2 + α2 (5.44b)

tan β1 = α/(b + a) (5.44c)

tan β2 = α/(b − a) (5.44d)

b + a = T1[I22Ip
33(1 + √⎯ ⎯⎯⎯⎯I11/I22 ) − I2

23]/Δ′ (5.44e)
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Thus, while platform rate components are all at platform nutation frequencyλp, the rotor rate contains components
both at rotor nutation frequencyλs = λp − ωs = (σ − 1)ωs, and atλp + ωs = (σ + 1)ωs.

Using Eq. 4.5, the resultant linear acceleration at a point

ra = eT
s [r1, r2, r3]T (5.45)

is found as

a1 = r3λp[Acos(λst + β1) + B cos {(λp + ωs)t + β2}] + r2λp[c sinλpt − dcosλpt] − r1ω2
s (5.46a)

= r3σωs[A cos {(σ − 1)ωst + β1} + B cos {(σ + 1)ωst + β2}] + r2σωs[c sinλpt − dcosλpt] − r1ω2
s

a2 = r3λp[A sin(λst + β1) − B sin {(λp + ωs)t + β2}] − r1λp[c sinλpt − dcosλpt] − r2ω2
s (5.46b)

= r3σωs[A sin {(σ − 1)ωst + β1} − B sin {(λp + ωs)t + β2}] − r1λp[c sinλpt − dcosλpt] − r2ω2
s

a3 = A(ωs − λs)[r1 cos(λst + β1) + r2 sin(λst + β1)] − B(λp + 2ωs)[r1 cos {(λp + ωs)t + β2} (5.46c)

+ r2 sin {(λp + ωs)t + β2}]

= Aro(2 − σ)ωs cos {(σ − 1)ωst + β1 − γ} − Bro(2 + σ)ωs cos {(σ + 1)ωst + β2 + γ}

with

γ = Tan−1{r 2/r1} (5.47)

ro = √ r2
1 + r2

2 . (5.48)
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5.6 Free (Nutation) Response to an Arbitrary Torque Impulse

In this section we consider the free response of a dual-spin vehicle to an impulse oriented in an arbitrary direc-
tion, i.e., it may have a spin axis (3-axis) component as well as the previously considered transverse component.
The impulse is assumed small enough that linearized motion prevails. Arbitrary mass distribution of the platform is
permitted while the rotor is assumed statically balanced.

We generate the torque impulse with an impulsive forceF applied to the rotor at locationy with respect to the
rotor cm which in turn is located atr1 with respect to the spacecraft cm.y is fixed in rotor basises andr1 is fixed in
platform basisep. Thus consider the torque

T = [r1 + y] × F . (5.50)

The transverse components ofT expressed inep are denoted T1, T2. The spin axis component ofy × F adds spin
momentum to the rotor, howev er, for linearized motion rotor spin rate is assumed fixed so this effect is neglected in
the linearization process. The spin axis term ofr1 × F appears as an external torque perturbation on the platform as
discussed on page 3.3 in connection with Eq. 3.16. Therefore, we denote the 3-axis term ofr1 × F as T3, and the
applied momentum impulse for torque pulse widthτ is

M = eT
pτ[T1, T2, T3]T = eT

p[M1, M2, M3]T . (5.51)

Applying this to plant dynamics of Eq. 2.40 and assuming the platform despun (ωp = 0) yields angular rates

ωωp = eT
p[ω1, ω2, ω3]T (5.52)

= eT
p(1/∆′)













{M 1[I 22I
P
33 − I2

23] + M2[I12I
P
33 + I13I23] + M3[I13I22 + I12I23]} cosλpt

− {[M 2IP
33 + M3I23]I 11λ1/λp} sin λpt

− − − − − − − − − − − − − − − − − − − − −
{M 1[I 12I

P
33 + I13I23] + M2[I11I

P
33 − I2

13] + M3[I23I11 + I12I13]} cosλpt

+ {[M 1IP
33 + M3I13]I 22λ2/λp} sin λpt

− − − − − − − − − − − − − − − − − − − − −
{M 1[I 13I22 + I12I23] + M2[I23I11 + I12I13] + M3[rI 11I22 − I2

12]} cosλpt

+ {M 1[I 23I22λ2/λp] − M2[I13I11λ1/λp]} sin λpt + M3∆′/Ip
33













where

∆′ = I11I22I
p
33(1 − r) (5.53)

λ2
p = λ1λ2/(1 − r) , (5.54)

and λ1, λ2 are given by Eq. 2.35. r is giv en by Eq. 2.47e or more generally 1 - r is the s3 coefficient of (2.40j)
divided by I11I22I

p
33. The inertia elements Iij are elements of̂Ip as defined in Eq. 3.15. Note if the platform is stati-

cally balanced M3 above vanishes and the analysis of this section reduces to that of the preceding section. However,
M3 could be the result of an external force on the platform, in which case the analysis of this section applies irre-
spective of static balance.

The objective here is to determine the nutation response which is just Eq. 5.52. The nutation angle excursions
are obtained by integrating (5.52), i.e., dividing byλp. Due to platform inertia asymmetry an asymmetric "pseudo
ellipse" is traced out by the spin axis on a plane as in Figure 5.4 of the preceding section. Note, if we set
M2 = M3 = 0 in (5.52) we again get the solution of that section.

For purposes of insight and to obtain a simple expression for nutation angle we make some simplifications in
(5.52). Let I12 = 0 which can be effected by a new choice ofep rotated about the 3-axis. Further, neglecting product
terms in the imbalance inertias I13, I23, the rates reduce to
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ωωp = eT
p






[M1 + M3(I13/I
P
33)][1/I 11] cosλpt − [M2 + M3(I23/I

P
33)][(λ1/λp)/I22] sinλpt

[M2 + M3(I23/I
P
33)][1/I 22] cosλpt + [M1 + M3(I13/I

P
33)][(λ2/λp)/I11] sinλpt

[M1(I13/I
P
33)/I11 + M2(I23/I

P
33)/I22] cosλpt + [M1(I23/I

P
33)(λ2/λp)/I11 − M2(I13/I

P
33)(λ1/λp)/I22] sinλpt + M3/I

p
33






.(5.55)

Finally, if we assume approximate symmetry, I11 ≈ I22 ≈ IT = √ I11I22, and define equivalent transverse momentum
impulses

M1′ = M1 + M3I13/I
p
33 (5.56a)

M2′ = M2 + M3I23/I
p
33 , (5.56b)

we get

ωωp = eT
p






(M1′/IT) cosλpt − (M2′/IT) sinλpt

(M2′/IT) cosλpt + (M1′/IT) sinλpt

[M1(I13/I
p
33) + M2(I23/I

p
33)][1/IT] cosλpt + [M1(I23/I

p
33) − M2(I13/I

p
33)][1/IT] sinλpt + M3/Ip

33






. (5.57)

Then inspecting the transverse rate terms of (5.57) the symmetric approximation to nutation angle induced by the
arbitrary torque impulse is

θn = [M1′2 + M2′2]1/2/[λpIT] = MT′/H . (5.58)

Thus, for the symmetric case (and approximately otherwise) we get an equivalent transverse momentum impulse
which yields the nutation angle in conventional form. The reader is cautioned to observe the special nature of M3

discussed at the beginning of this section when this results from a force impulse on the rotor combined with platform
static imbalance.

Next consider briefly the case where the initially despun platform is permitted to spin (open-loop) after appli-
cation of torque impulse M3. In this case for the symmetric vehicle the platform rates are

ωωp ≈ eT
pωp






[(1 + ωp/λp)/IT][I 13 cosλpt − I23 sinλpt] − ωpI13/H

[(1 + ωp/λp)/IT][I 23 cosλpt + I13 sinλpt] − ωpI23/H

1






, (5.59)

where the spin term isωp = M3/Ip
33 and H is the rotor spin momentum. This rate solution is the superposition of the

impulse response from M3 and the response to constant coning torques−I23ωp
2, and I13ωp

2. The latter component is
obtained by applying the constant torques to Eq. 2.40 withωp ≠ 0. The momentum is

H ≈ eT
p






ωp(1 + ωp/λp)/[I 13 cosλpt − I23 sinλpt − I13]

ωp(1 + ωp/λp)/[I 23 cosλpt + I13 sinλpt − I23]

H + Ip
33ωp − ωp[(I 13

2 + I23
2)/IT][(1 + ωp/λp) cosλpt − ωp/λp]






. (5.60)

Eqs. 5.59 and 60 give the angular rate and momentum obtained previously for coning, but with nutation terms added.
Note that the transverse momentum components vanish at t = 0 as they must for a spin torque impulse.
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5.7 Small Angle Attitude and Spin Axis Motions Induced by Rotor Fixed External Torques

Consider a rotor fixed external torque step along the 1-axis expressed as

T = eT
s T1[1, 0, 0]Tu(t) (5.61)

= eT
pT1[cosωrt, sinωrt, 0]Tu(t) ,

whereωr = ωs − ωp is rotor to platform relative rate. Let the rotor be balanced and symmetric and the platform bal-
anced such that I12 = I13 = I23 = 0. Then inverting the transform of Eq. 2.40 with initial platform rate

ωωp(0) = eT
p[ω1(0), ω2(0), ωp]T (5.62)

yields

ωωp = eT
p






ω1(0)cosλpt − ω2(0)(λ1/λp) sinλpt

ω1(0)(λ2/λp) sinλpt + ω1(0)cosλpt

ωp






u(t) (5.63)

+ eT
pT1/(λ2

p − ω2
r )






[(λ2
p + λ2ωr)/λpI11] sinλpt − [(λ2 + ωr)/I11] sinωrt

−[(λ1 + ωr)/I22]cosλpt + [(λ1 + ωr)/I22]cosωrt

0






u(t)

whereλ2
p = λ1λ2 with λ1, λ2 as expanded in Eq. 2.35. We hav e maintained the generality of platform asymmetry

and steady spin rates of platform and rotor ofωp, ωs. The second term of 5.63 transforms to the rotor basis to give

ωωs = eT
s T1/[2(λ2

p − ω2
r )]















[(λ2
p + λ2ωr)/λpI11 + (λ1 + ωr)/I22] sin(λp − ωr)t

+ [(λ2
p + λ2ωr)/λpI11 − (λ1 + ωr)/I22] sin(λp + ωr)t

+ [(λ2 − λ1)ωr/λ1I11] sin 2ωrt

− − − − − − − − − − − − − − − − −
− [(λ2

p + λ2ωr)/λpI11 + (λ1 + ωr)/I22] cos(λp − ωr)t

+ [(λ2
p + λ2ωr)/λpI11 − (λ1 + ωr)/I22] cos(λp + ωr)t

+ [(λ2 − λ1)ωr/λ2I22] cos 2ωrt + [(2λ2
p + (λ2 + λ1)ωr)/λ2I22]

− − − − − − − − − − − − − − − − −
ωs















. (5.64)

Note the presence of two frequencies,λp − ωr andλp + ωr in 5.64 due to asymmetry as obtained elsewhere herein
for an impulse torque. The former is the usual rotor nutation frequency for a symmetric vehicle,
λs = λp − ωr = (σs − 1)ωs, while the latter isλp + ωr = (σs + 1)ωs. Here we use rotor ‘effective’ inertia ratio as

σs = (Is + Ipωs/ωp)/IT . (5.65)

The remaining goals of this section are adequately served by assuming symmetry, i.e., I11 = I22 = IT, which
also givesλp = λ1 = λ2. The symmetric vehicle rate solution is generalized to a pulse torque however. The pulse
response is useful for thruster nutation control analysis. Specifically the torque pulse is written

T = eT
s T1[1, 0, 0]T[u(t) − u(t − t1)] (5.66)

= eT
pT1[cosωrt, sinωrt, 0]T[u(t) − u(t − t1)] .
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The symmetric balanced vehicle platform rate solution is

ωωp = eT
p






ω1(0) cosλpt − ω2(0) sinλpt

ω1(0) sinλpt + ω2(0) cosλpt

ωp






u(t) + eT
p[T1/ITλs]






sinλpt − sinωrt

−cosλpt + cosωrt

0






u(t) (5.67)

+ eT
p[T1/ITλs]






−sin{λpt − λst1} + sinωrt

cos {λpt − λst1} − cosωrt

0






u(t − t1) .

The corresponding rotor rate is

ωωs = eT
s






ω1(0) cosλst − ω2(0) sinλst

ω1(0) sinλst + ω2(0) cosλst

ωs






u(t) + eT
s [T1/ITλs]






sinλst

−cosλst

0






u(t) (5.68)

+ eT
s [T1/ITλs]






−sinλs(t − t1)

cosλs(t − t1)

0






u(t − t1) + eT
s [T1/ITλs]






0

1

0






[u(t) − u(t − t1)] .

Summarizing, 5.67 and 5.68 give the angular rate responses of rotor and platform in their respective vector bases due
to a rotor fixed torque pulse for the symmetric balanced dual-spin vehicle with rotor and platform spinning respec-
tively at ratesωs, ωp. Inertial, platform, and rotor nutation frequencies are respectively

λo = σsωs = H/IT (5.69a)

λp = λo − ωp = σsωs − ωp (5.69b)

λs = λo − ωs = σsωs − ωs = (σs − 1)ωs . (5.69c)

Next we shall consider the approximate small angle inertial motion of the spin axis and momentum vector
with a rotor fixed step torque. Letei be a despun basis approximately inertially fixed which is related to the platform
basis asei = B(ωpt)Tep where B is given by Eq. 1.10. Transforming the platform transverse rates to the inertial basis

ωi =




ω1(0) cosλot − ω2(0) sinλot

ω1(0) sinλot + ω2(0) cosλot





+
T1

ITλs





sinλot

− cosλot




u(t) (5.70)

+
T1

ITλs





− sin {λot − λst1}

cos {λot − λst1}




u(t − t1) +

T1

ITλs





−sinωst

cosωst




[u(t) − u(t − t1)]

=




ω1(0) cosλot − ω2(0) sinλot

ω1(0) sinλot + ω2(0) cosλot





+
T1

ITλs
2sin[(λo − ωs)t/2]





cos[(λo + ωs)t/2]

sin[(λo + ωs)t/2]




u(t)

+
T1

ITλs





− sin {λot − λst1} − sinωst

cos {λot − λst1} + cosωst




u(t − t1) .

The latter form of 5.70 is sometimes a more easily recognized form of the rate signal in a simulation, i.e., a signal of
frequency (λo + ωs)/2 = (σs + 1)ωs/2 with a modulating envelope at frequency (λo − ωs)/2 = (σs − 1)ωs/2. When
the platform is despun 5.70 is the platform rate. Integrating the step portion of 5.70 (t1 → ∞) for small angle
motion
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θθi = θθi (0) + 1/λo





ω1(0) sinλot + ω2(0)[cosλot − 1]

ω2(0) sinλot − ω1(0)[cosλot − 1]





+ [T1/ITλs]




[1 − cosλot]/λo − [1 − cosωst]/ωs

−[sinλot]/λo + [sinωst]/ωs




u(t) (5.71)

= θθi (0) + 1/λo





ω1(0) sinλot + ω2(0)[cosλot − 1]

ω2(0) sinλot − ω1(0)[cosλot − 1]





+ [T1/Hλs]








1 − σs

0





−




cosλot

sinλot





+ σs





cosωst

sinωst








u(t)

where here the latter form is written for easier visualization of the motion. Depicted on Figure 5.5, this motion can
be viewed as the sum of a constant plus two vectors rotating respectively at ratesλo andωs. On the figure labels the
substitutionsλo = ωn andσs = σ are used.

Concurrently, the momentum vector angle in inertial space is

φφ(t) = φφ(0) + [1/H]

t

0

∫ T(t)dt = φ(0) + [T/Hωs]




cosωst − 1

sinωst




u(t) (5.72)

= φφ(0) + [2T/Hωs] sin[ωst/2]




sin[ωst/2]

cos[ωst/2]




u(t) ,

which, as depicted, is the sum of a constant and a term rotating at spin rateωs.

The response of this section can be used to predict behavior under numerous circumstances where rotor fixed
torques are applied. One source of a rotor fixed torque is the pulse from an ideal apogee boost motor which has mis-
alignment and offset errors producing mispointing and reduction in the delivered velocity impulse (see Figure 5.6).
We use this as an example for application of the geometry of Figure 5.5. The maximum nutation angle (between
momentum vector and spin axis) is seen to occur when the momentum vector is at the origin and the spin axis is at
it’s maximum excursion along the 2-axis of Figure 5.5. This maximum nutation is 2T/{Hωs|1 − σs|}. Attitude error
is the instantaneous excursion of the momentum vector from its initial position and is bounded by 2T/Hωs. Consid-
ering the average spin axis position over a torque pulse of many spin and nutation cycles duration, it is noted thatθ1,
θ2 have average values T/Hωs, and zero respectively. Thus, on the average the boost acceleration has a pointing
error of T/Hωs. Finally consider the thrust loss due to coning. The coning motion produces a spinning transverse
acceleration which integrates to zero net velocity change and hence represents a reduction of the motor delivered
impulse. If the thrust vector were offset by a fixed angle from the spin axis, then the velocity impulse lost∆V is
related to the net impulse delivered Vo by ∆V/Vo = 1 − cosδ ≈ δ2/2. Vo is delivered along the direction
θi = (−T/Hωs, 0), while it may be observed thatδ between this average direction and the instantaneous thrust varies
from min {δ} = T/Hωs to max {δ} = (T/Hωs)(1 + σs)/(1 − σs) with a mean valueδo = (T/Hωs)/(1 − σs). One
approach to thrust loss estimation (suggested by D. Challoner) is

∆V/Vo = 1 − cosδ ≈ 1 − (1 − δ2/2) = δ2/2 . (5.73)

Then using 5.72 and manipulating somewhat

δ2 = |θi (t) − θi |
2 = [T/{H ωs(σs − 1)}] 2[1 + σ2

s − 2σs cos {(λo − ωs)t}] , (5.74)

such that

δ2 = (1 + σ2
s)[T/{H ωs(σs − 1)}] 2 . (5.75)

Although this probably doesn’t giv e the loss for any real situation it probably does give the functional dependence
on important parameters. Summarizing the apogee boost error bounds are approximated:

Maximum Nutation : 2T/Hωs|1 − σs| = 2T/H|λs| = 2ρ (5.76a)

Maximum Attitude Error : 2T/Hωs (5.76b)

Average Thrust Pointing Error : T/Hωs (5.76c)

Percent Coning Loss :∆V/Vo = {(1 + σ2
s)/2}[T/{H ωs(σs − 1)}] 2 (5.76d)

= {(1 + σ2
s)/2}[T/{H λs}]

2 = {(1 + σ2
s)/2}ρ2 .

Percent Coning Loss(Imbalance) := { σ2
s/2}[T/{H ωs(σs − 1)}] 2 = { σ2

s/2}[T/{H λs}]
2 = { σ2

s/2}ρ2 . (5.76e)

5.15



A detailed expansion of the coning loss with simultaneous disturbance torque and dynamic imbalance in both axes
provided by Jack Murphy is recorded here as

ΔV

Vo
= 1 − cos ξ ≈

ξ2

2

≈ 1

2

⎧
⎪
⎨
⎪
⎩

⎡
⎢
⎣
1 +

1

σ2

⎤
⎥
⎦

⎧
⎪
⎨
⎪
⎩

⎡
⎢
⎣

σ2T1

Hωs(σ2 − 1)

⎤
⎥
⎦

2

+
⎡
⎢
⎣

σ1T2

Hωs(σ1 − 1)

⎤
⎥
⎦

2⎫
⎪
⎬
⎪
⎭

+ T1I23

⎡
⎢
⎣

σ2

[H(σ2 − 1)]

⎤
⎥
⎦

2

− T2I13

⎡
⎢
⎣

σ1

[H(σ1 − 1)]

⎤
⎥
⎦

2

+
⎡
⎢
⎣

σ1I13

Is(σ1 − 1)

⎤
⎥
⎦

2

+
⎡
⎢
⎣

σ2I23

Is(σ2 − 1)

⎤
⎥
⎦

2⎫
⎪
⎬
⎪
⎭

.

If the transverse torque is known, and the engine is restartable, a simple two-burn profile can be used to minimize
the average thrust pointing error, θe, and reduce the thrust impulse perturbation ΔVe (Ref. 33).

φ(t), Momentum 
        Vector 

T 
Hωs                         

σT 
Hωs(1 - σ)                         

T 
Hωs(1 - σ)                         

θ2, φ2 

Figure 5.5  Spin Axis and Momentum Vector Motion in Inertial Space Under 
                  Constant Rotor Fixed Torque Without Nutation Damping. 
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Constant Rotor Fixed Torque Without Nutation Damping.
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ΔV =  Vo
2 - 2VVocosθe + V2  

Figure 5.6  Velocity Impulse Error Definitions. 

ΔVo 

V 

1 + σs
2 

2
T 

Hωs(1 - σ)                         
=

2

δ 

z θ 

F 

ωs 

T = [zθ + δ]F 

θe 

Vo =  |a(t)|dt  

V =  a(t)dt  

θe =  T 
Hωs

ΔVe =  2Vosinθe/2 

Vo

Transverse Inertia Asymmetry and Dynamic Imbalance Spin Up/Down

A rotor fixed transverse torque in the presence of rotor transverse inertia asymmetry can produce a secular
spin torque (Ref. 4). Let the rotor transverse inertia asymmetry be denoted ΔIs

T = Is
22 − Is

11. Then the spin torque
may be written

T3 = − ΔIs
Tω10ω20 − Is

13ω20ωs + Is
23ω10ωs .

The asymmetry component is maximized when the transverse rate is equally distributed between the two axes at
T3 = [ΔIs

T/2]ω2
T. Using the transverse rate due to an open-loop transverse disturbance torque T1 from Eq. 5.68

T3 =
ΔIs

T

2
ω2

T =
ΔIs

T

2

⎡
⎢
⎣

T1

ITλs

⎤
⎥
⎦

2

=
ΔIs

T

2

⎡
⎢
⎣

T1

IT(σ − 1)

⎤
⎥
⎦

2
1

ω2
s

= Isω̇s = Is
dωs

dt
.

Integrating,

ω3
s = ω3

so +
ΔIs

T

2Is

⎡
⎢
⎣

T1

IT(σ − 1)

⎤
⎥
⎦

2

t .

For the imbalance effect, using the transverse rate solutions from 5.68

T3 =
⎡
⎢
⎣

−Is
13T1 + Is

23T2

IT

⎤
⎥
⎦

ωs

λs
=

⎡
⎢
⎣

−Is
13T1 + Is

23T2

IT(σ − 1)

⎤
⎥
⎦

= θw2T1 + θw1T2 ,

so the asymmetry spin acceleration is proportional to 1/ω2
s while the imbalance acceleration is constant. Note that

the transverse rate due to the imbalance itself, θwωs does not couple because it is in the same plane as the imbalance.
However, as the last form shows, the transverse rate cross coupled torque is exactly that which results by viewing the
torque in the principal basis.

Dead-Beat Thrust Startup

When a velocity change is executed with a thruster having a large transverse torque, for example a radially
offset axial thruster, the coning and nutation rates and angles become undesirably large inducing a large thrust loss
and/or pointing error. By using a properly timed startup pulse it is possible to execute the maneuver without nuta-
tion. From 5.68 the nutation during thrust is normally

ωωs(t) = ρλoeT
s [sin λst, − cos λst, 0]T

so the technique is to establish an initial condition with the startup pulse that cancels this steady state nutation.
Beginning with no nutation, firing a one sixth nutation period duration pulse, λst1 = π/3, produces rate
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ωωs(t) = (ρλo/2)eT
s [sinλst + √3 cosλst, − cosλst + √3 sinλst, 0]T

= ρλoeT
s [sin(λst + π/3), − cos(λst + π/3), 0]T .

Then initiating continuous thrust atλst2 = 2π/3 + 2nπ = (1 + 3n)(2π/3) will induce nutation that cancels the initial
condition resulting in no nutation during the continuous burn.

The thrust pointing error can be minimized by positioning the average spin axis position in the desired thrust
direction. This can be implemented by initially offsetting the attitude in an arbitrary direction of magnitude equal to
the cone angle, then starting the maneuver when the transverse torque vector is inertially aligned with the attitude
offset rotation vector. When combined with the deadbeat it necessary that t2 − t1 be equal to an integer number, say
m, of spin periods to preserve the pre-establishedaverage attitudeposition. This leads to the relation

t2 − t1 =
1

λs




π
3

+ 2nπ


=
2π
λs





1

6
+ n





= m
2π
ωs

,

giving nominally

n = |σ − 1|m− 1/6 .
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5.8 Small Angle Spin Axis Motion Induced by a Despun Platform Fixed External Torque

Assume initial platform angular rates

ωωp(0) = eT
pωp(0) = eT

p[ω1(0), ω2(0), ω3(0)]T (5.77)

and a step torque

T = eT
p[T1, 0, 0]Tu(t) (5.78)

applied at time zero. We wish to determine the spin axis and angular momentum vector motion given thatT is small
enough that linear motion prevails. We first invert Eq. 2.40 to obtain the free response to the initial condition, or
equivalently to an impulse input,T = eT

pIpωp(0)δ(t). The result is

ωωp = eT
p[ωp1, ωp2, ωp3]

T , (5.79a)

with

∆′ωp1 = { [I 22I
p
33 − I2

23]I 11 − [I 12I
p
33 + I13I23]I 12 − [I 13I22 + I12I23]I 13} ω1(0) cosλpt (5.79b)

− { { ∆′λ1/[I 22λp(1 − r)]}[ −I12ω1(0) + I22ω2(0) − I23ω3(0)] − I23I11(λ1/λp)[−I13ω1(0) − I23ω2(0) + Ip
33ω3(0)]} sinλpt

∆′ωp2 = { [I 11I
p
33 − I2

13]I 22 − [I 12I
p
33 + I13I23]I 12 − [I 23I11 + I12I13]I 23} ω2(0) cosλpt (5.79c)

+ { { ∆′λ2/[I 11λp(1 − r)]}[I 11ω1(0) − I12ω2(0) − I13ω3(0)] + I13I22(λ2/λp)[−I13ω1(0) − I23ω2(0) + Ip
33ω3(0)]} sinλpt

∆′ωp3 = { [I 11I22λ1λ2/λ2
p][I 13ω1(0) + I23ω2(0)]} [cosλpt − 1] + [I 11I22λ1λ2/λ2

p]I
p
33ω3(0) (5.79d)

+ { [I 12I13I11λ1 + I23I11I22λ2](ω1(0)/λp) − [I 12I23I22λ2 + I13I22I11λ1](ω2(0)/λp)} sinλpt

whereλp is platform nutation frequency,

∆′ = I11I22I
p
33(1 − r) (5.80)

and r is defined by noting that∆′ is the coefficient of s3 in ∆(s) given in Eq. 2.40j. Also note that with the platform
despun,λi /λp = √ Ijj /Iii , and Iii λi /λp = IT = √ I11I22. The secular 3-axis term will vanish if there is any position con-
trol. If the platform is assumed balanced and symmetric the 3-axis term above vanishes and the remaining coeffi-
cients reduce to simply the rate initial values. Next we invert (2.40), as in (2.43), to get the driven solution due to
step torque T1. This operation gives

ωωp = eT
pT1/(λp∆′)






[I 22I
p
33 − I2

23] sinλpt

[I 12I
p
33 + I13I23] sinλpt + Ip

33I22(λ2/λp)[1 − cosλpt]

[I 13I22 + I12I23] sinλpt + I23I22(λ2/λp)[1 − cosλpt]






. (5.81)

To obtain the spin axis motion we integrate, dropping the spin axis term as it is assumed a despin control system
maintains the platform despun. Hence,

θθ(t) = θθ(0) + eT
pT1/(λ2

p∆′)





[I 22I
p
33 − I2

23][1 − cosλpt]

[I 12I
p
33 + I13I23][1 − cosλpt] + Ip

33I22(λ2/λp)[λpt − sinλpt]

0






. (5.82)

Simplifying to the balanced case I13 = I23 = 0, and I12 = 0 as well,

θθ(t) = θθ(0) + eT
pT1/(I11λ2

p)[1 − cosλpt, λ2t − sinλpt, 0]T . (5.83)

The motion is shown on Figure 5.7 where the notationλp = ωn is used. The corresponding attitude (momentum vec-
tor) motion is

φ(t) = φ(0) + (1/H) ∫ T1(t)dt = φ(0) + t T1/H = φ(0) + t T1/Isωs (5.84)

and this motion is also shown on Figure 5.7. It is simple to show thatθ2(t) = φ2(t) every half nutation period, and
θ(t) = φ(t), i.e., the spin axis and momentum vector are coincident every full nutation period.
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It is of interest also to know the angular rates in the rotor basis due to the platform fixed (inertial) constant
torque. Using again the balanced platform representation and transforming to the rotor basis

ωωs = eT
s T1/(I11λp)

⎡
⎢
⎢
⎣

sin λst + (λ2/λp) sin ωrt

− cos λst + (λ2/λp) cos ωrt

0

⎤
⎥
⎥
⎦

, (5.85)

where ωr is rotor to platform relative rate and λs = λp − ωr is rotor nutation frequency. Thus, both the anticipated
nutation and precession terms are evident.

Figure 5.7  Spin Axis and Momentum Vector Small Angle Motion in Inertial Space  
                  Under Impulse and Constant Despun Platform Fixed (Inertial) Torque. 
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Nutation Free Precession Maneuver

Given the necessary torqueing capability, it would be desirable to perform a pure precession maneuver without
nutation. For this purpose consider the simple balanced case (all products of inertia zero) and allowing nonzero ini-
tial conditions, sum 5.79 and 5.81 to get

ωωp = eT
p







T1I22I
p
33/(λp∆′)






sinλpt

(λ2/λp)[1 − cosλpt]

0






+





ω1(0)cosλpt − (λ1/λp)ω2(0)sinλpt

ω2(0)cosλpt − (λ2/λp)ω1(0)sinλpt

0












. (5.86)

Settingω1(0) = ω3(0) = 0 andω2(0) = T1/I11λ1 = T1/H yields the desired pure precession over the interval t, t1, as

ω2(t) = T1/H[u(t) − u(t − t1)]

when the control torque is

T = eT
p{T 1[u(t) − u(t − t1)], I22T1/H[δ(t) − δ(t − t1)], 0}T . (5.87)

The initial impulse torque establishes a nutation corresponding to 5.79 that cancels the nutation induced by applica-
tion of the step precession torque of 5.81. Removal of the step at time t1 induces a new nutation that is canceled by
the additional negative impulse at the same instant. For the general unbalanced case, when one equates coefficients
of sinλt, cosλt in 5.79 and 5.81, six equations in three unknowns result. Thus, it does not appear there is a solution
of this form that gives the nutation free precession maneuver.

Spinning Spacecraft Wobble Capture Maneuver

Consider a single body spinning spacecraft spinning about its maximum principle axis of inertia, which is dis-
placed from a desired or geometric spin axis by a dynamic imbalance product of inertia I13. The maneuver investi-
gated here, subject of a U. S. Patent (Ref. 32), is to move the spin axis into the inertial position of the principal axis,
and the angular momentum vector H, and arrest its coning motion. Initially the H vector is inertially fixed, with no
torque on the vehicle, and the spin axis cones at spin rate about it at the wobble angleθw = I13/[I T − Is]. After the
capture the spin axis is fixed in exactly the direction initially describing the momentum vector H, and the H vector
cones at spin rate about this line with cone angleθH = T/Hωs = I13ω2

s/Isω2
s = I13/Is. The capture scenario is sketched

on Figure 5.8 below. Observe the ratio of momentum coning angle to wobble angle is
θH/θw = [I T − Is]/I s = [1 − σ]/σ ≈ 1 − σ, which is small when the inertia ratio is near unity.

With no nutation prior to control application,ω(t) = [θwωs, 0, 0]T. If at time t = 0 we apply a step torque
T2 = − I13ω2

s, (see for example the right side of 2.34b) the initial wobble rate becomes an initial nutation rate
ω1(t) = θwωs. Now the objective is to null the nutation while driving the spin axis to the position of the initial
momentum vector. With adequate sensing, one might apply control feedback torque to simultaneously null nutation
rates and spin axis position error. Alternatively, we might null rates in a manner that approximately preserves atti-
tude. One simple open-loop solution that is helpful in underatanding the problem is to apply a sinusoidal transverse

nutation damping torque in the body at body nutation frequencyλ̂
2
s = [λ2

s + r(3λsωs + 2ω2
s)]/(1 − r). Such a torque is

expressed

T = eT
s






T1 cosλ̂st

T2 sinλ̂st

0






= eT
i






T1 cosψ cosλ̂st − T2 sinψ sinλ̂st

T2 cosψ sinλ̂st + T1 sinψ cosλ̂st

0






= eT
i






T1 cosωst cosλ̂st − T2 sinωst sinλ̂st

T2 cosωst sinλ̂st + T1 sinωst cosλ̂st

0






(5.88)

≈ eT
i

1

2






T1 cosλot + T2 cosλot

T2 sinλot + T1 sinλot

0






, ≈ eT
i To






cosλot

sinλot

0






,

the latter expression for To = T1 = T2. One method to solve for the response is to substitudeωs for ωp in the
required terms of (2.40). The resultant transverse rates due to this torque approximate
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ω(t) ≈
t

2(1 − r)IT

⎡
⎢
⎣

[T1 + (1 − r)T2]cosλ̂st

[T2 + (1 − r)T1]sinλ̂st

⎤
⎥
⎦

≈
Tot

IT

⎡
⎢
⎣

cos λ̂st

sin λ̂st

⎤
⎥
⎦

. (5.89)

This sinusoidal torque can simply be applied for enough time to allow the driven nutation frequency rates to cancel
the nutation, i.e., t = ω1(0)IT/To, and then removed while the above mentioned step torque remains on to cancel the
wobble dynamic torque. If the nutation period is long in comparison to the spin period, the nutation damping sinu-
soidal torque will not change significantly over a spin period, and will not produce a large attitude perturbation. The
attitude error can be more quantitatively bounded by integrating the torque of Eq. 5.

θa(t) = = eT
i

1

H

t

0
∫ Tdt = eT

i
To

H

t

0
∫

⎡
⎢
⎢
⎣

cos λot

sin λot

0

⎤
⎥
⎥
⎦

dt = eT
i

To

Hλo

⎡
⎢
⎢
⎣

sin λot

1 − cos λot

0

⎤
⎥
⎥
⎦

. (5.90)

From this expression we see as expected that the attitude excursion due to the nutation damping sinusoid is
oscillatory at inertial nutation frequency. Suppose we choose to damp the initial nutation in n body nutation periods.
Using t = 2nπ/λs, and equating the coefficient of (5.89) to the initial rate ω1(0) = θwωs, giv es To = I13ω2

s /[2nπ]. The
bound on attitude excursion is max {θa} = 2To/[Hλo] = I13/[nπσIs] ≈ I13/[nπIs]. The implication that making n large
will arbitrarily reduce attitude error will not be correct for large wobble angles where the linearization becomes
weaker.

ωs                        

Figure 5.8  Wobble Capture Geometry. 
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5.9 Nutation Induced by a Uniform Transverse Torque Impulse Series

Uniform Pulses

Consider a series of torque impulses of magnitudeθo applied at period∆t and all in a fixed direction in a vec-
tor basis from which nutation frequency is observed atλ. Two of the most frequently encountered cases are iner-
tially fixed pulses withλ = λo = σωs, or body fixed pulses whereλ = λs = (σ − 1)ωs. Let the nutation damping time
constant beτ. Then the nutation immediately following the nth pulse is

θ1 = θo

θ2 = θ1e−(∆t/τ − jλ∆t) + θo

θn = θn−1e−(∆t/τ − jλ∆t) + θo (5.91)

= θo

n

i=1
Σ e−(i − 1)(∆t/τ − jλ∆t)

= θo

n

i=1
Σ x(i − 1) = θo[(1 − xn)/(1 − x)] .

where

x = e−(∆t/τ − jλ∆t) . (5.92)

Substituting x back inθn gives

θn = θo





1 − e−n(∆t/τ − jλ∆t)

1 − e−(∆t/τ − jλ∆t)





(5.93)

whose magnitude is

|θn| = θo





1 + e−2n∆t/τ − 2e−n∆t/τ cos(nλ∆t)

1 + e−2∆t/τ − 2e−∆t/τ cos(λ∆t)





1/2

. (5.94)

As

τ → ∞; |θn| → θo





sin(nλ∆t/2)

sin(λ∆t/2)





. (5.95)

Pulsing at resonance with nutation

λ∆t → 2mπ; |θn| → θo





1 − e−n∆t/τ

1 − e−∆t/τ





→ nθo, asτ → ∞ . (5.96)

One of the most common instances of nutation buildup is spin period attitude trim. However, with insertion of the
proper∆t the relation is valid for any pulse rate greater or less than spin rate provided impulses are uniformly spaced
in the vector basis with nutation frequencyλ, e.g., uniform stepping of a platform or rotor mounted instrument. The
reference* gives a catalog of impulse magnitudes for various types of instrument stepping disturbances. A unique
example is spin rate pulsing of a rotor fixed thruster. This is a pulse train fixed both inertially and in the rotor, yield-
ing cos nλ∆t = cos 2nπσ considered in an inertial basis, or cos nλ∆t = cos[2nπ(σ − 1)] = cos 2nπσ when considered
in the rotor basis.

An additional solution given by (5.93) is as follows. Consider a rotor mounted thruster spinning at rateωs and
impulsively fired at intervals∆t. Thenthe attitude perturbation after n pulses is given by (5.93) withλ = ωs and
τ → ∞. We hav e previously noted that nutation for this case is given by (5.93) withλ = (σ − 1)ωs.

IDC 4091.2/202 (HS331-3706), "Nutation Induced by Periodic Impulsive Disturbance of a Spin Stabilized Spacecraft
Having a Passive Nutation Damper," L. H. Grasshoff, November 10, 1972.
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Asymmetric Pulses

Here we consider pulses with a fixed orientation in some basis but alternating in sign. Then

θ1 = θo

θ2 = θ1e−(∆t/τ − jλ∆t) + θoejπ

θn = θn−1e−(∆t/τ − jλ∆t) + θoej(n − 1)π (5.97)

= θoej(n − 1)π
n

i=1
Σ e−(i − 1)(∆t/τ − jλ∆t + jπ)

= θoej(n − 1)π
n

i=1
Σ x(i − 1) = θoej(n − 1)π[(1 − xn)/(1 − x)] .

= θoej(n − 1)π



1 − e−n(∆t/τ − jλ∆t + jπ)

1 − e−(∆t/τ − jλ∆t + jπ)





.

This gives nutation magnitude after the nth pulse of

|θn| = θo





1 + e−2n∆t/τ − 2e−n∆t/τ cos[n(λ∆t − π)]

1 + e−2∆t/τ − 2e−∆t/τ cos(λ∆t − π)





1/2

. (5.98)

In this case, as

τ → ∞; |θn| → θo





sin[n(λ∆t − π)/2]

sin[(λ∆t − π)/2]





. (5.99)

while at resonance

λ∆t → (2m − 1)π; |θn| → θo





1 − e−n∆t/τ

1 − e−∆t/τ





→ nθo, asτ → ∞ . (5.100)

A unique application of this is rotor fixed thruster pulsing at twice spin rate such that∆t = π/ωs. Considered
in a despun basisλ = λo = σωs, and the pulses alternate so the nutation is given by the result of this section. Alter-
nately, considered in the rotor basisλ = λs = (σ − 1)ωs and the result of the previous section applies and predicts the
same result.
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6.0 Miscellaneous Dual-Spin Dynamics Phenomena
6.1 Nutation Resonance

Nutation singular points are discussed in Appendix B, however two rather unique and well known singular
points with somewhat more analytical detail in this and the following section. Consider a dual-spin spacecraft with
rotor and platform spinning respectively atωs andωp. The approximate platform rates derived from small angle lin-
earized equations are given by Equation 5.28. By a proper choice of basesep, we can write the platform rate as

ωωp = eT
p[ω1, 0, ωp]T , (6.1)

where

ω1 = − ω2
p√ I2

13 + I2
23 /[λ2I22] = − ωp√ I2

13 + I2
23 /[I s

33ωs/ωp + Ip
33 − I11] .  (6.2)

Hereω1 will be along a platform axis normal to the plane of the product√ I2
13 + I2

23. The corresponding cone angle
between the spin axis and the angular momentum vector is from (5.30 and 31).

tanθc = ω1/ωp = √ I2
13 + I2

23 /[I s
33ωs/ωp + Ip

33 − I11] .  (6.3)

To get this solution, recall that we have assumed a symmetric balanced rotor. Also, nutation has been ignored; how-
ev er, for smallθc the system is linear and this "free" solution can be added by superposition. If we now admit a
rotor transverse asymmetry, Is

11 ≠ Is
22 (or equivalently, Is12 ≠ 0), I11 may be expressed with an appropriate choice of

basis as

I11 = Ip
11 + {[I s

22 + Is
11]/2} − {[I s

22 − Is
11]/2} cos 2ωrt = IT + [∆Is/2] cos 2ωrt .  (6.4)

Hence, the rotor asymmetry is seen to cause the platform transverse rate vector and the cone angle to vary at twice
relative rate. Bothω1 andθc have approximately constant values to which are added a smaller component varying at
2ωr. Numerous dynamic simulations have shown that during a platform spinup or down when this frequency and
the platform nutation frequency become approximately equal, the platform coning motion due to rotor asymmetry
induces a rapid and substantial buildup of cone angle (nutation). The phenomenon has become recognized as "nuta-
tion resonance."

An approximate relationship betweenωs andωp at resonance can be obtained. We write momentum as

H = eT
p[H1, 0, H3]T = eT

pH[sinθc, 0, cosθc]
T (6.5)

where H= |H|. Then equating twice the relative rate to platform nutation frequency

2ωr = 2(ωs − ωp) = λp = λo − ωp = H/IT − ωp =
H3

[IT cosθc]
− ωp (6.6)

=
Is
33ωs + Ip

33ωp

IT cosθc
− ωp = σsωs/ cosθc − ωp ,

and rearranging

ωp =




2 cosθc − Is
33/IT

cosθc + Ip
33/IT




ωs . (6.7)

For smallθc, the approximate

ωp ≈




2 − Is
33/IT

1 + Ip
33/IT




ωs . (6.8)

Denoting the rotor rate with the platform despun asωso, and considering a platform spinup which approximately
conserves momentum in the spin axis

ωs ≈ ωso − Ip
33ωp/Is

33 . (6.9)
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This leads to the approximate relation at resonance of

ωp ≈




2 − Is
33/IT

1 + 2Ip33/I
s
33




ωso =





2 − σo

1 + 2Ip33/I
s
33




ωso . (6.10)

In such a spinup, the final platform and rotor rates are equal, and closely

ωf = Is
33ωso/[I

s
33 + Ip

33] .  (6.11)

Requiringωf > ωp whereωp is the resonant value above yields

Ip
33 >





(1 − σo)

σo




Is
33 . (6.12)

If σ > 1 the right side is negative, indicating that for this case resonance is always encountered in a spinup. If
σf = [I s

33 + Ip
33]/I T < 1, the spinup will eventually diverge to a flat spin withθc approaching 90o, in which case

numerous approximations above donot hold. Extensive simulations of present day vehicles show that in this case
resonance usually occurs near the end of flat spin divergence and is rather benign. For the caseσo < 1 < σf , the
above approximations have been found reasonably good when the platform imbalance is small enough to keepθc

small. However, in such a case, a platform spinup results in a short period of spin about an intermediate axis of iner-
tia during whichθc diverges as an overdamped exponential (closely). To some degree, this latter effect may be
inseparable from nutation resonance.
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6.2 Nutation Phase Lock*

If the despun platform on a dual-spin vehicle havingσ < 1  (gyrostat) is permitted to spinup, it will at some
point develop a spin rateωp equal to inertial nutation frequencyλo. When these two rates are equal, the centrifugal
torques due to platform dynamic imbalance rotate at the same rate as the vehicle transverse rate vector. If insuffi-
cient despin torque is available to further spin up of the platform, the above torque and rate vector become phase
locked such that the dynamic torque adds momentum in the transverse plane as despin torque (friction et. al.)
removes it from the spin axis. In this phase locked condition, transverse rate (nutation angle) grows linearly with
time producing an eventual divergence to flat spin. Equations for transverse rate and nutation angle in the phase
locked condition are derived below.

Consider a dual-spin vehicle configuration with symmetric balanced rotor and Ip
12 = 0. Then Equation 2.34

applies and, truncating small rate inertia products, it reduces to

eT
p






ITω̇1 + λpITω2

ITω̇2 − λpITω1

Ip
33ω̇3






= eT
p






−I23ω2
p

I13ω2
p

T3






(6.13)

assuming no external torques. We wish to transform to an "approximately inertial" despun basiseo by removing the
platform spinωp, i.e.

ep =





cosφp

− sinφp

0

sinφp

cosφp

0

0

0

1






eo . (6.14)

Then the platform rate transforms as

ωωp = eT
p[ω1, ω2, ω3 + ωp]T (6.15)

= eT
o[ω1 cosφp − ω2 sinφp, ω2 cosφp + ω1 sinφp, ω3 + ωp]T = eT

o[ωx, ωy, ω3 + ωp]T ,

and the angular accelerations similarly.

Transforming the torque equations and substituting the rate expressed ineo gives,

eT
o






ITω̇x + λoITωy

ITω̇y − λoITωx

Ip
33ω̇3






= eT
o







−ω2
p√ I2

13 + I2
23 cos(φp − γ)

−ω2
p√ I2

13 + I2
23 sin(φp − γ)

T3







, (6.16)

with

sinγ = I23/√ I2
13 + I2

23 (6.17a)

cosγ = I13/√ I2
13 + I2

23 . (6.17b)

Settingφp = ωpt and applying sufficient perseverance, the solution is

ωx(t) = ωx(0) cosλot − ωy(0) sinλot −
ω2

p sinγ√ I2
13 + I2

23

(λo − ωp)IT



−{ cosλot − cosωpt} + (1/ tanγ){ sin λot − sinωpt} 


(6.18a)

* A  more precise derivation than given here yields the phase lock platform rate as
ωp = (H/IT){1 − (I23/IT)2/3 + (Is

22 − Is
11)/2IT} .
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ωy(t) = ωy(0) cos λot + ωx(0) sin λot −
ω2

p cos γ√⎯ ⎯⎯⎯⎯I2
13 + I2

23

(λo − ωp)IT

⎡
⎣
−{ cos λot − cos ωpt} − tan γ{ sin λot − sin ωpt}⎤

⎦
. (6.18b)

Combining the sinusoidal sum terms as products at sum and difference frequencies,

ωx(t) = ωx(0) cos λot − ωy(0) sin λot −
ω2

p√⎯ ⎯⎯⎯⎯I2
13 + I2

23

IT

⎡
⎢
⎣

sin[(λo − ωp)t/2]

[(λo − ωp)/2]

⎤
⎥
⎦

cos[(λo + ωp)t/2 − γ] (6.19a)

ωy(t) = ωy(0) cos λot + ωx(0) sin λot −
ω2

p√⎯ ⎯⎯⎯⎯I2
13 + I2

23

IT

⎡
⎢
⎣

sin[(λo − ωp)t/2]

[(λo − ωp)/2]

⎤
⎥
⎦

sin[(λo + ωp)t/2 − γ] .  (6.19b)

Setting the initial conditions to zero, the transverse rate magnitude is

ωT(t) =
tω2

p√⎯ ⎯⎯⎯⎯I2
13 + I2

23

IT

⎡
⎢
⎣

sin(λo − ωp)t/2

(λo − ωp)t/2

⎤
⎥
⎦

. (6.20)

Thus, in the limit at resonance λo → ωp, ωT(t) grows linearly with time as

ωT(t) →
tλ2

o√⎯ ⎯⎯⎯⎯I2
13 + I2

23

IT
. (6.21)

Integrating the forced rate response in the limiting case as λo → ωp yields

θx(t) =
−√⎯ ⎯⎯⎯⎯I2

13 + I2
23

IT
[cos(λot − γ) + λot sin(λot − γ) − cos γ] (6.22a)

= − [I13 cos λot + I23 sin λot + λot{I13 sin λot − I23 cos λot} − I13]/IT

θy(t) =
−√⎯ ⎯⎯⎯⎯I2

13 + I2
23

IT
[sin(λot − γ) − λot cos(λot − γ) + sin γ] (6.22b)

= − [I13 sin λot − I23 cos λot − λot{I13 cos λot + I23 sin λot} + I23]/IT .

From these equations the spin axis divergence path is sketched as Figure 6.1 below.

Figure 6.1  Trajectory of Spin Axis Divergence on Inertial Plane in Phase Locked State.

θx

θy

 I13 + I23/IT
2 2
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6.3 Nutation Spinup

An approach sometimes employed to increase the spin momentum of a spinning spacecraft is to induce trans-
verse axis momentum (nutation) with a thruster and then transfer this momentum to the spin axis via a momentum
conserving nutation damper. Ifωs is the initial spin rate with no nutation, and nutation angleθ is induced with
thrusters, the initial and final momenta are

Hi = Is
33ωs (6.23)

Hf = Is
33ωs/ cosθ . (6.24)

Hence,

∆H = Hf − Hi = Is
33ωs[1/ cosθ − 1] = Is

33∆ωs (6.25)

where∆ωs is the change in spin speed that will result when the induced nutation is transferred to the spin axis. For
small angles, the latter approximates to

∆H ≈ Is
33ωsθ2/2 ≈ Is

33∆ωs . (6.26)

An efficient approach to induce nutation is to apply thruster torque T for half rotor nutation periods. Let

|λs| = |σ − 1|ωs (6.27)

be the rotor nutation frequency. Then the torque pulses are of duration∆t = π/|λs| and Appendix C shows that when
properly phased, each pulse will induce nutation

θ = 2ρ = 2T/H|λs| = 2T/[Is
33|σ − 1|ω2

s] .  (6.28)

Substituting this in the small angle approximation of∆H, the spin speed change per pulse is

∆ωs = [T/(I s
33λs)]

2[2/ωs] = [T/(I s
33|σ − 1|)]2[2/ω3

s] .  (6.29)

If the nutation is induced by a thruster with transverse torque rnfn, spinup fuel sensitivity can be written

Sn =
∆w

∆ωs
=





fn∆t

Isp





1

∆ωs
=





Tπ
rn|λs|Isp





1

∆ωs
=





π/2

r2
nfnIsp




Is
33

2ωs|λs| .

For a spin thruster with spin torque rsfs, the spin increment is∆ω = [rsfs∆t]/I s
33, while fuel consumption sensitivity is

Ss =
∆w

∆ωs
=





fs∆t

Isp





1

∆ωs
=

Is
33

rsIsp

Then nutation spin up is more efficient when

Ss

Sn
=





Is
33

rsIsp









r2
nfnIsp

(π/2)Is33
2ωs|λs|





=




1

rs









r2
nfn

(π/2)Is33ωs|λs|





> 1 .
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6.4 Allspun Recovery Static Motor Torque Bounds and Rocking Frequency

Let ei be an inertial basis with 3-axis along the momentum vector as depicted below on Figure 6.2. Assuming
no external torques, this vector is inertially fixed. Denote the spacecraft inertial spin phase about the momentum
vector byψ and the cone angle by

θc = Tan−1




√ H2
1 + H2

2

H3





(6.30)

where

H = eT
pH = eT

p[H1, H2, H3]T (6.31)

andep is a platform fixed basis with 3-axis along the bearing axis. Define a third basiseb with 3-axis along the bear-
ing axis and 1-axis along the transverse momentum vectorHT = eT

p[H1, H2, 0]T. Finally, denoting the displacement
of ep from eb asβp, the bases are related as

eb = C1ei =





cosθc

0

sinθc

0

1

0

− sinθc

0

cosθc











cosψ
− sinψ

0

sinψ
cosψ

0

0

0

1






ei (6.32)

ep = C2eb =





cosβp

− sinβp

0

sinβp

cosβp

0

0

0

1






eb (6.33)

with

βp = Tan−1[H2/H1] .  (6.34)

The inertial angular rate ofeb is then

ωωb = eT
b[0, θ̇c, 0]T + eT

bC1[0, 0, ψ̇]T = eT
b[−ψ̇ sinθc, θ̇c, ψ̇ cosθc]

T = eT
bωb (6.35)

and the platform inertial rate is

ωωp = ωωb + eT
p[0, 0, β̇p]T = eT

p






−ψ̇ sinθc cosβp + θ̇c sinβp

ψ̇ sinθc sinβp + θ̇c cosβp

ψ̇ cosθc + β̇p






= eT
pωp = eT

p






ωp1

ωp2

ωp3






. (3.36)

The dynamic torques exerted by the platform along the bearing axis (3-axis ofep andeb) are obtained by dif-
ferentiatingωωp and substituting in Eq. 2.16. The resultant torque is

T3 = − Ip
13ω̇p1 − Ip

23ω̇p2 + Ip
33ω̇p3 + [I p

22 − Ip
11]ωp1ωp2 − Ip

23ωp1ωp3 + Ip
13ωp2ωp3 + Ip

12[ω
2
p2 − ω2

p1] .  (6.37)

Substitutingωp, ω̇p in terms ofψ̇, θc, andβp, and taking all derivatives closely zero the approximate static torque
bound reduces to

T3 = (ψ̇2/2)[−∆Ip sin2 θc sin {2(βp + γ1)} + √ Ip
13

2 + Ip
23

2
sin 2θc sin(βp + γ2)] , (6.38)

where

∆Ip = |Ip22 − Ip
11| = √ (Ip

22 − Ip
11)2 + (2Ip12)2 (6.39)

γ1 = (1/2)Tan−1[2Ip
12/(I

p
22 − Ip

11)] (6.40)

γ2 = Tan−1[I p
23/I

p
13] (6.41)

and

ψ̇ = H/Im (6.42)

with Im the maximum principal axis of the all-spun vehicle with the rotor to platform rotation adjusted to maximize
Im. ∆Ip is the platform transverse inertia difference withep chosen such that Ip

12 = 0. Thus, the maximum T3 > 0
over βp ε (0, 2π) is the static torque limit which must not be exceeded to avoid platform spinup during flat spin
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recovery of a prolate (σ < 1) dual-spin vehicle. Similarly this bound must be exceeded to despin the platform on an
all-spun oblate (σ > 1) dual-spin vehicle.

The torque limit T3 derived above isthe static torque required to hold the two bodies in a fixed relative posi-
tion βp as a function of that position. For someβp, in the equilibrium trap state, T3 = 0 and at some other point it is
maximized. The latter torque is what must be overcome in a static sense to initiate relative spin between the two
bodies.

If I p
13 = Ip

23 = 0, the inertia matrix may be expressed in a body coordinate system rotated fromep by the angle
γ1 such that Ip12 = 0, and the torque bound reduces to

T3 = (ψ̇2/2)∆Ip sin2 θc sin 2βp . (6.43)

The parallel bound for the rotor is derived in the same manner, and may be obtained from T3 by inserting rotor
inertias.

If sufficient motor torque does not exist to overcome the maximum static torque given by T3 above the allspun
trap state can sometimes be overcome by rocking the two dual spin bodies with respect to each other. A natural fre-
quency is established by the vehicle momentum state and mass properties for small motions about the allspun equi-
librium state. By linearizing the equation for T3 about the equilibriumβp and denoting perturbations byβp, we get

T3 = Ip
33β̈p + (ψ̇2/2)[2∆Ip sin2 θc − √ Ip

13
2 + Ip

23
2

sin 2θc]βp = Ip
33[β̈p + Ω2βp] .  (6.44)

For flat spinθc = 90o and the natural frequency is

Ω2 ≈ ψ̇2[∆Ip/Ip
33] .  (6.45)

By pulsing the torque motor at this frequency a recovery can be initiated with much less torque than that given by
the static bound. More generally one can solve for the steady state allspun cone angleθc and substitute in the
restraining torque equation T3. For a symmetric vehicle with I13 = 0 in the allspun state

tan 2θc = I23/[(I T − I33)/2] (6.46a)

sin 2θc = − I23/{[(I T − I33)/2]2 + I2
23}

1/2 (6.46b)

cos 2θc = − [(I T − I33)/2]/{[(I T − I33)/2]2 + I2
23}

1/2 (6.46c)

where the inertias are for the total allspun vehicle.

If both rotor and platform are statically imbalanced the trap state becomes much more severe. The relation-
ship of the two body mass centers and the bearing axis for this case are depicted on Figure 6.3. Some static torque
maintains angleβp between the two bodies as depicted. For a stable spinner the spin vector is approximately out of
the page as indicated by the circles, while for a flat spin condition the spin vector will be in the page approximately
normal to the line joining the mass centers. In either case it is clear the body mass centers tend to opposite sides of
the bearing axis and some minimum torque will be required to initiate more than 90o of relative motion.
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Figure 6.2  Geometry for Analysis of Dynamic Imbalance Trap State.
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Figure 6.3  Geometry of the Static Imbalance Trap State.
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For this case a somewhat different approach is taken to derive the bound. From the bearing bending restraint
equation derived earlier (4.21) we have

Mp = Jp ⋅ ω̇̇ωp + ωωp × [Jp ⋅ ωωp] + mpr2 × r̈p (6.47)

using the notation of Figure 6.3 and lettingJp denote inertia of the platform with respect to its own cm. Using the
center of mass definition it is found that

rp = (ms/m)[r2 − r1] .  (6.48)

Since we are interested in the static caseω̇p = ω̇s = 0, andωp = ωs. Also bothr1, r2 are fixed in a basis of either
body while the two bodies are again at relative phaseβp. Then denote

rp = eT
p(ms/m)[x2 − x1 cosβp, − x1 sinβp, z2 − z1]T , (6.49)

while

r̈p ≈ ωωp × [ωωp × rp] .  (6.50)

Thus, the spin axis component ofMp is

M3 = (Jp
22 − Jp

11)ω1ω2 + Jp
12(ω

2
2 − ω2

1) + Jp
13ω2ω3 − Jp

23ω1ω3 (6.51)

+ mp(ms/m){x1(z2 − z1)ω2ω3 + x2(x2 − x1 cosβp)ω1ω2 + x1x2 sinβp(ω2
2 + ω2

3)} .

Of course the rates here are in general very complex functions of the mass properties and presumably this will
reduce to the previous bound T3 with sufficient effort. Of significant interest is the simple dynamically balanced and
symmetric inertia case where the vehicle is allspun about an axis near the bearing axis. Then the recovery torque
bound simplifies to

M3 = mp(ms/m)ω2
3x1x2 sinβp . (6.52)

Similarly, in flat spin we reason from Figure 6.3 that the primary rate will beω2, and the bound is

M3 = mp(ms/m)ω2
2x1x2 sinβp . (6.53)
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6.5 Separation Dynamics

Consider two bodys initially joined as a single rigid body that are separated by an internal force acting
between them. Given mass properties, the separating force F(t), and initial linear and angular velocities v, ΩΩ, we
wish to calculate linear and angular velocities of the separated bodies. Figure 6.4a depicts problem geometry and
defines various position and rate vectors.

Immediately following initiation of the separation when the interbody constraints are released and the internal
force begins to act, body a has angular momentum

Ha = ∫ [ro + r1 + x1 + u1] × [ṙo + ṙ1 + ẋ1 + u̇1]dm1

= m1[ro + r1 + x1] × [ṙo + ṙ1 + ẋ1] + ∫ u1 × u̇1dm1 (6.54)

= m1[ro + r1 + x1] × [ṙo + ṙ1 + ẋ1] + Ja ⋅ ωωa ,

Inertial 
Point

ωa

Figure 6.4a  Two Body Separation Geometry.

Body b

Body a

u2
Jb, m2

Ja, m1

ro

Ω

ωb

r1

u1

r2

F -F

y2

y1
x1

x2

ro

r1

r2

and differentiating

Ḣa = ∫ [ro + r1 + x1 + u1] × [r̈o + r̈1 + ẍ1 + ü1]dm1

= m1[ro + r1 + x1] × [r̈o + r̈1 + ẍ1] + ∫ u1 × ü1dm1 (6.55)

= m1[ro + r1 + x1] × [r̈o + r̈1 + ẍ1] + Ja ⋅ ω̇̇ωa + ωωa × [Ja ⋅ ωωa] .

The moment on body a is

Ma = [ro + r1 + x1 + y1] × F = m1[ro + r1 + x1] × [r̈o + r̈1 + ẍ1] + y1 × F . (6.56)
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Equating (6.55) and (6.56), the body a moment equation becomes

Ja ⋅ ω̇̇ωa + ωωa × [Ja ⋅ ωωa] = y1 × F (6.57)

whereF is given and at time zeroωωa = ΩΩ is given. Of course there may be multiple forces (torques) that sum on the
right side of (6.57). Initial linear velocity is

v1 = ṙo + ṙ1 = ṙo + ΩΩ × r1 . (6.58)

Acceleration after release is

ẍ1 = F/m1 (6.59)

which results in linear velocity

v1 + ∆v1 = ṙo + ΩΩ × r1 + ∫ ẍdt . (6.60)

The solution of (6.57) and (6.59) is the sought result for body a. An entirely parallel set of equations describe
motion of body b. Howev er, such a separation is usually executed by lettingF be a spring between the two bodies.
In general this yieldsF as a function of the position of both bodies. Since the force is internal m1ẍ1 = − m2ẍ2 and
x2 − x1 = − (1 + m1/m2)x1. Thus, the internal spring force will be a function of the body position difference and
both body rates (orientations), i.e.,F = F(x1, ωωa, ωωb). As a result, for the general case one must integrate 9 dynamic
equations simultaneously to obtainx1, ωωa, ωωb. These equations are (6.57), (6.59), and the counterpart to (6.57) for
body b.

Expanding (6.57) for a dynamically balanced body in body fixed vector basisea gives

eT
a






Ja
11ω̇1 + (Ja

33 − Ja
22)ω2ω3 − Ja

13ω̇3 + Ja
23ω2

3

Ja
22ω̇2 − (Ja

33 − Ja
11)ω1ω3 − Ja

23ω̇3 − Ja
13ω2

3

Ja
33ω̇3 + (Ja

22 − Ja
11)ω1ω2 + Ja

13ω2ω3 − Ja
23ω1ω3






→ eT
a






Ja
11ω̇1 + (Ja

33 − Ja
22)ω2ω3

Ja
22ω̇2 − (Ja

33 − Ja
11)ω1ω3

Ja
33ω̇3 + (Ja

22 − Ja
11)ω1ω2






= y1 × F . (6.61)

We shall solve the simple case for a spinning body,Ω3(0) = ωs, where the separation force is impulsive, and where
the bodies are axis symmetric, i.e., J22 = J11 = JT. Denote the force and moment impulses respectively as

∫ Fdt = Fτ = eT
aτ[F1, F2, F3]T (6.62)

and

∫ y1 × Fdt = Tτ = eT
aτ[T1, T2, T3]T . (6.63)

The 3-axis equation from (6.61) integrates to spin rate of the separated body a as

ωs = Ω3(0) + τT3/Ja
33 . (6.64)

Then the body a nutation frequency becomes

λa = (Ja
33/J

a
T − 1)ωs = (σa − 1)ωs . (6.65)

Integrating the transverse axis equations from (6.61) yields final body a angular rates

ωωa = eT
a






[τT1/Ja
T + Ω1(0)] cosλat − [τT2/Ja

T + Ω2(0)] sinλat

[τT2/Ja
T + Ω2(0)] cosλat − [τT1/Ja

T + Ω1(0)] sinλat

ωs






. (6.66)

Simultaneously the velocity of body a mass center becomes

v1 + ∆v1 = ṙo + ΩΩ × r1 + (τ/m1)F (6.67)

and solutions similar to (6.66) and (6.67) hold for the opposite body. The velocity of a point on body a located atya
with respect to its cm has velocity

va = v1 + ∆v1 + ωωa × ya = ṙo + ΩΩ × r1 + (τ/m1)F + ωωa × ya , (6.68)

and the position change of this point
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Δya(t) =
t

0
∫ vadt . (6.69)

Observe that if F imparts no torque the angular rates remain unaltered by separation. However, the nutation angle
excursion may change due to a different nutation frequency for the separated body. Letting σ and θ represent inertia
ratio and nutation angle for the initial stack and σa, θa similarly for separated body a, the relation

tan θa/tanθ = σ/σa ≈ θa/θ , (6.70)

the latter for small angles, holds for a torque free separation. It may also be shown that the attitude of the separated
body shifts by an amount equal to the nutation change in a random direction from the attitude of the original body.

Separation Clearance Reduction due to One Body Dynamic Imbalance

Here we consider the first-order effect of a dynamic imbalance Ja
23 on body a. Assume a spinning axial sepa-

ration and that the launch vehicle, body b, has perfect control imparting a perfect spin ω3 = ωs about the 3-axis of
the geometric coordinate basis. Note another case that we do not solve at present is when the launch vehicle exerts
no control. To accomplish the former the launch vehicle will have to apply a constant body fixed torque T1 = Ja

23ω2
s ,

see Eq. 6.61, which will force the momentum vector to cone in space. The coning angle can be found as
θi

h = Ja
23/[Ja

33 + Jb
33] and at the instant of release, body a has pure spin about its 3-axis and momentum vector at cone

angle θh = Ja
23/Ja

33. Hence the principal axis is displaced from the geometric axis by θw = Ja
23/[Ja

33 − Ja
22], and from

the momentum vector, which is fixed in inertial space after separation, by initial nutation angle

θn = θw ± θh = Ja
23/[Ja

33 − Ja
22] ± Ja

23/Ja
33 = {Ja

23/[Ja
33 − Ja

22]}
⎡
⎢
⎣

σ2 ± (σ2 − 1)

σ2

⎤
⎥
⎦

=
⎧
⎨
⎩

θw/σ2 ; σ2 > 1

θw(2σ2 − 1)/σ2 ; σ2 < 1
. (6.71)

At the instant of release body a will have angular rate purely about spin and a step torque −Ja
23ω2

s as a result of
removal of the b body canceling control torque. Hence, using 5.67, 68

ωωa = − eT
a

⎡
⎢
⎢
⎣

θwωs sin λst

θwωs[1 − cos λst]

ωs

⎤
⎥
⎥
⎦

= − eT
i

⎡
⎢
⎢
⎣

θnλo sin λot − θwωs sin ωst

−θnλo cos λot + θwωs cos ωst

ωs

⎤
⎥
⎥
⎦

. (6.72)

ω3 = ωs
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ea
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3
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Figure 6.4b  Spin and Momentum Vector Geometry at Separation.
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Consider the velocity of a point on body a at

r = eT
a[r1, r2, r3]T = eT

i [r1 cosωst − r2 sinωst, r1 sinωst + r2 cosωst, r3] (6.73)

which is

∆v1 = ωωa × r = eT
ar3






θwωs − θnλo cosλst

−θnλo sinλst

0






+ eT
a






−r2ωs

r1ωs

0






= eT
ar3θwωs






1 − cosλst

− sinλst

0






+ eT
a






−r2ωs

r1ωs

0






(6.74)

= − eT
i






θnλo sinλot − θwωs sinωst

−θnλo cosλot + θwωs cosωst

ωs






× eT
i






r1 cosωst − r2 sinωst

r1 sinωst + r2 cosωst

r3






= eT
i r3






θnλo cosλot − θwωs cosωst

θnλo sinλot − θwωs sinωst

v3






+ eT
i ωs






− r1 sinωst − r2 cosωst

r1 cosωst − r2 sinωst

0






.

Further manipulating, forσ > 1,

= eT
i r3θwωs






cosλot − cosωst

sinλot − sinωst

v3






+ eT
i






− r1ωs sinωst − r2ωs cosωst

r1ωs cosωst − r2ωs sinωst

0






.

In the last form the velocity is separated into the component due to normal spin (second component) and perturba-
tions induced by wobble and nutation. Both body a and b are rotating at the same rate, so it is the relative transverse
velocity perturbation that is if interest in a separation clearance analysis. Integrating the perturbation

d1(t) = eT
i r3θwωs






−[sinλot]/λo + [sinωst]/ωs

[1 − cosλot]/λo − [1 − cosωst]/ωs

d3






= eT
i r3θw






−[sinλot]/σ + [sinωst]

[2sin2(λot/2)]/σ − [2sin2(ωst/2)]

d3






. (6.75)

In general the motion is complex and must simply be evaluated over time, but if |σ − 1|, λs is small the following
approximations obtain,

[1 − cosλot]/λo ≈
1

ωs
[1 − λs/ωs]{[1 − cosωst] − [cosλot − cosωst]}

=
1

ωs
[1 − λs/ωs]{[1 − cosωst] + 2[sin(λst/2)][sin(λo + ωs)t/2]}

≈
1

ωs
{[1 − cosωst] + 2[sin(λst/2)][sin(λo + ωs)t/2]}

[sinλot]/λo ≈
1

ωs
{[sinωst] + 2[sin(λst/2)][cos(λo + ωs)t/2]} ,

and the distance is periodic near spin speed with magnitude increasing relatively slowly comparable to half body
nutation period as

d1(t) ≈ eT
i 2r3θwsin(λst/2)






−cos[(λo + ωs)t/2]

sin[(λo + ωs)t/2]

d3






≈ eT
i 2r3θwsin(λst/2)






−cosωst

sinωst

d3






. (6.76)

If, as usually the case, axial clearance occurs in some timeδt small compared to body nutation period, the transverse
clearance loss may then be bounded by

d1(δt) ≈ r3θwλsδt = r3θw(σ − 1)ωsδt = r3[Ja
23/J

a
T]ωsδt ; δt << 2π/λs . (6.77)
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6.6 Static Stability and Propellant Migration

As employed here the term static stability refers to stability of the principal axes of inertia with respect to the
desired equilibrium spin axis (bearing axis). In a completely rigid body the principal axes are of course fixed to the
body. In a flexible body, or a system of bodies with relative motion permitted, the system principal axis orientation
will depend on the relative position of the elements. Specifically a rigid body with movable propellant mass and
desired principal axis in some nominal geometric orientation with propellant nominally distributed may be stable or
otherwise under small imbalance perturbations of the rigid body.

In References 12,13 and 26, the subject of static stability is treated in theory and some specific examples of
vehicle geometry are examined. For present purposes, consider a vehicle having four propellant tanks at some frac-
tion fill and a perfectly balanced spinning section (rotor or entire vehicle as applicable to discussion of a particular
orbit condition). With the propellant frozen in the perfectly balance equilibrium about the desired spin axis, the spin
to transverse inertia ratio is denoted by σ. If a small rotor dynamic imbalance δI is introduced, it produces a princi-
pal axis shift

εi = δI/{IT(σ − 1)} . (6.78)

The vehicle will then spin about the new principal axis and the nominal spin axis will cone about it in the spin fre-
quency motion commonly termed wobble. If the propellant is then unfrozen it will seek a new equilibrium by repo-
sitioning within individual tanks and, if unconstrained, by migrating between banks. At this equilibrium the princi-
pal axis is displaced from the nominal spin axis by

ε = δI/{IT[(σ − Kp/IT) − 1]} = αεi (6.79)

where

α = 1/[1 − Kp/{IT(σ − 1)}] . (6.80)

α is the wobble amplification factor and Kp is a parameter dependent upon tank geometry and location, propellant
density and fraction fill, and total vehicle mass. The spacecraft is said to be statically stable if for arbitrary ε, there
exists a δI (or εi) such that the resultant principal axis tilt is less than ε. The amplification factor α is plotted qualita-
tively as Figure 6.5. Here it is observed that α < 1 (attenuation) for σ < 1, and α > 1 (amplification) for
σ > 1 + Kp/IT. In the region (1, 1 + Kp/IT) the principal axis is unstable, i.e., for small δI propellant will redistribute
to produce a large principal axis shift. The equation given for α contains implicit small angle assumptions, so it is
not valid in this region. Clearly in the on station configuration when σ < 1 the effect is beneficial.

1 + Kp/IT

Figure 6.5  Wobble Amplification Factor versus Rigid Body Inertia Ratio.

σ

Unstable
 Stable 

 Stable 

1/[1 + Kp/IT]

α
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Propellant Imbalance Amplification on a Single Body Spinning Spacecraft

The derivation herein applies to a single body spinner or to a dual-spin spacecraft with the platform (body not
having propellant tanks) despun, by replacing transverse inertias Js

ii with total vehicle transverse inertia. In Ref. 26
some discussions and derivations are given reg arding a dual-spin vehicle with both bodies spinning.

Tank Geometry and Propellant Equilibrium Location

For even the simplest tank shapes, location of the free surface and center of mass can be very complex. We
treat the spherical or equivalent tanks for which the equilibrium free surface is a cylinder about the true spin axis
(nearly always the case for any tank shape) and the center of mass is on a radial line in the spin plane passing
through the geometric center of the sphere. Several aspects and symbol definitions of this geometry are shown on
Figure 6.6.
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^es
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r

a) In Plane Product and Tilt; σ > 1
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δcm 2

3

Imin
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d) In Plane Product and Propellant Migration

ε2

δcm

ν1

c) Out of Plane Product and Tilt

b) In Plane Product and Tilt; σ < 1

2

3Imin

Imax

Figure 6.6  Principal Axis of Inertia Repositioning Due to Propellant Tilt and Migration.
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Let the body basis bees and assume a principal axis basis, sayês, displaced by imbalance tilt anglesε1, ε2,
such that

ês = A2(ε2)A1(ε1)es . (6.81)

A vector to some tank center of geometric symmetry is

r t = eT
s rt = eT

ŝ A2(ε2)A1(ε1)rt = eT
ŝ [x1, x2, x3]T (6.82)

so that

r *
t = eT

ŝ [x1, x2, 0]T (6.83)

is a radial vector in the spin plane passing through the tank center of symmetry, and therefore normal to the fluid free
surface. Then

ut = r *
t /|r *

t | (6.84)

is a unit vector normal to the free surface passing through tank center of symmetry. This vector can be used to
establish a new "free surface normal" vector basisef with a convenient orientation to the tank geometry such that cm
location and the inertia matrix of propellant in a partially filled tank can be readily computed. For a sphere, or coni-
sphere with sufficient faction fill to be regarded as a sphere, this vector passes through the spherical propellant seg-
ment mass center. Mass properties for these geometries are given in Appendix K. Even in this almost trivial case
we shall approximate the free surface as planar and normal tout, an approximation that improves as the distance of
the tank from the spin axis gets large compared to tank radius.

We letJs = eT
s Jses denote the rigid body inertia dyadic of the spinning spacecraft with propellant frozen in its

equilibrium position about the balanced spin axis where the 3-axis is the spin axis. Introduction of rigid products of
inertia in orthogonal planes containing the spin axis results in approximate imbalance wobble angles (solving for
rotation angles to null products of inertia in the matrices of Appendix E)

εo
1 = + (1/2)Tan−1{2Js

23/[J
s
22 − Js

33]} ≈ + Js
23/[J

s
22(1 − Js

33/J
s
22)] ≈ + Js

23/[J
s
T(1 − σ2)] (6.85a)

εo
2 = − (1/2)Tan−1{2Js

13/[J
s
11 − Js

33]} ≈ − Js
13/[J

s
11(1 − Js

33/J
s
11)] ≈ − Js

13/[J
s
T(1 − σ1)] (6.85b)

Propellant Repositioning Within Tanks

Introducing principal axis tiltε1 about the 1-axis and carrying out the formality of locating the resulting pro-
pellant symmetry vector, we get

r t = eT
s [0, rt, zt]

T = eT
ŝ A1(ε1)[0, rt, zt]

T = eT
ŝ [0, rt + ztε1, zt − rtε1]T (6.86)

giving

r *
t = eT

ŝ [0, rt + ztε1, 0]T (6.87)

and

ut = eT
ŝ [0, 1, 0]T . (6.88)

As was clear by inspection, since the tilt rotation axis is normal to the tank radial line in this case the propellant line
of symmetry is just the 2-axis of the tilted principal axis system. Hence we need only rotate the propellant inertia
back through the tilt angle to determine the perturbed inertia ines.

Values for propellant cm and free surface location with respect to the tank center ro, x, and propellant inertias,
Jf

ij as a function of tank fill fraction are given in Appendix K. The inertia computed with respect to spacecraft mass
center for fuel in one tank rotated by angleε1 about the tank center and having cm located at

r f = r t + ro = r t + eT
s AT(ε1)[0, ro, 0]T = eT

s {[0, yt, zt]
T + ro[0, cosε1, sinε1]T} ,  (6.89)

as depicted on Figure 6.6a is computed as
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Jf (r f1
, ε1) = eT

s {A T(ε1)JfA(ε1) − mf ˜rf1
˜rf1

} es = eT
s {A T(ε1)JfA(ε1) − mf[r̃t + [AT(ε1)ro]˜ ][ r̃t + [AT(ε1)ro]˜ ]} es

= eT
s






Jf
11

− −
− −

−Jf
12 cosε1 + Jf

13 sinε1

Jf
22 + [Jf

33 − Jf
22] sin2 ε1 + Jf

23 sin 2ε1

−Jf
23 cos 2ε1 − [(Jf

33 − Jf
22)/2] sin 2ε1

−Jf
13 cosε1 − Jf

12 sinε1

− − − − − − − − − − −
Jf
33 − [Jf

33 − Jf
22] sin2 ε1 − Jf

23 sin 2ε1






es

+ eT
s mf






(yt + ro cosε1)2 + (zt + ro sinε1)2

0

0

0

(zt + ro sinε1)2

−(yt + ro cosε1)(zt + ro sinε1)

0

−(yt + ro cosε1)(zt + ro sinε1)

(yt + ro cosε1)2






es

≈ eT
s AT(ε1)JfA(ε1)es + eT

s mf






(yt + ro)2 + (zt + roε1)2

0

0

0

(zt + roε1)2

−(yt + ro)(zt + roε1)

0

−(yt + ro)(zt + roε1)

(yt + ro)2






es . (6.90)

For reference the untilted inertia is

Jf (0) = eT
s [Jf − mfr̃f r̃f ]es = eT

s






Jf
11 + mf[z

2
t + (yt + ro)2]

−Jf
12

−Jf
13

−Jf
12

Jf
22 + mfz

2
t

−Jf
23 − mfzt(yt + ro)

−Jf
13

−Jf
23 − mfzt(yt + ro)

Jf
33 + mf(yt + ro)2






es . (6.91)

The resultant change in rotor inertia, assuming Js
ij , i ≠ j, due to the propellant tilt is

δJs(r f1
, ε1) = Jf (r f1

, ε1) − Jf (0) = (6.92a)

≈ eT
s






2mfztroε1

0

0

0

2mfztroε1

−{[J f
33 − Jf

22] + mf(yt + ro)ro} ε1

0

−{[J f
33 − Jf

22] + mf(yt + ro)ro} ε1

0






es ,

and for the companion tank on the negative 2-axis

δJs(r f2
, ε1) = Jf (r f2

, ε1) − Jf (0) = (6.92b)

≈ eT
s






−2mfztroε1

0

0

0

−2mfztroε1

−{[J f
33 − Jf

22] + mf(yt + ro)ro} ε1

0

−{[J f
33 − Jf

22] + mf(yt + ro)ro} ε1

0






es .

Then summing the inertia perturbations

Js(ε1) = Js(0) +
i
Σ δJs(r fi

, ε1) = Js(0) + δJs(r f1
, ε1) + δJs(r f2

, ε1) .  (6.93)

The true amplified principal axis tilt angleε1 may be found by solving this implicit equation, e.g., selectε1 and eval-
uate Js(ε1), then compute the principal axis tilt of this matrix, and iterate until the selected value and the computed
values match. However an approximate value is obtained as follows

δJs
23 = kpε1 = 2{[Jf

33 − Jf
22] + mf(yt + ro)ro} ε1 → 2mf(yt + ro)roε1 ; Jf → 0 ,  (6.94a)

and

ε1 = + (1/2)Tan−1{2Js
23/[J

s
22 − Js

33]} ≈ Js
23/[J

s
22(1 − Js

33/J
s
22)] (6.94b)

=
Js
23 + δJs

23

[Js
T(1 − σ2)]

=
Js
23 + kpε1

Js
22(1 − σ2)
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=
Js
23

Js
22[(1 − σ2) − kp/Js

22]
=

Js
23

Js
22[1 − σ2 − δσ2]

= αεo
1

δσ2 = kp/Js
22 = 2{[Jf

33 − Jf
22] + mf(yt + ro)ro} ε1/Js

22 → 2mf(yt + ro)roε1/Js
22 (6.94c)

α =
1

1 −
kp

Js
22(1 − σ2)

→
1

1 −
2mf(yt + ro)ro

Js
22(1 − σ2)

. (6.94d)

For a tilt about the 2-axis induced by rigid product of inertia Js
13 we derive in analogous fashion

r t = eT
s [0, yt, zt]

T = eT
ŝ A2(ε2)[0, yt, zt]

T = eT
ŝ [−ztε2, yt, zt]

T (6.95)

leading to

r *
t = eT

ŝ [−ztε2, yt, 0]T (6.96)

and the propellant symmetry vector

ut =
eT

ŝ [−ztε2, yt, 0]T

√ y2
t + (ztε2)2

≈ eT
ŝ [−(zt/yt)ε2, 1, 0]T , (6.97)

which indicates that the propellant free surface basisef is rotated by small angleν3 = − (zt/yt)ε2 about the 3-axis of
ês. To express the perturbed propellant inertia ines we must first rotate propellant cm and inertia parametersro and
J throughν3 about the 3-axis, and then byε2 about the 2-axis as

Jf (ν3, ε2) = eT
s {A T(ε2)AT(ν3)JA(ν3)A(ε3) − mfr̃f r̃f ]} es (6.98)

= eT
s {A T(ε2)AT(ν3)JA(ν3)A(ε3) − mf[r̃t + [AT(ε2)AT(ν3)ro]˜ ][ r̃t + [AT(ε2)AT(ν3)ro]˜ ] . } es

Forming the vehicle cm to propellant cm vector for this case

r f = r t + ro = r t + eT
s AT(ε2)AT(ν3)[0, ro, 0]T (6.99)

= eT
s {[0, yt, zt]

T + ro[− cosε2 sinν3, cosν3, sinε2 sinν3]T} ≈ eT
s [−roν3, yt + ro, zt]

T}

= eT
s [ro(zt/yt)ε2, yt + ro, zt]

T} .

The propellant inertia becomes

Jf (ν3, ε2) ≈ eT
s AT(ε2)AT(ν3)JfA(ν3)A(ε2)es + eT

s mf






(yt + ro)2 + z2
t

−roztε2

−ro(zt/yt)ztε2

−roztε2

z2
t

−(yt + ro)zt

−ro(zt/yt)ztε2

−(yt + ro)zt

(yt + ro)2






es . (6.100)

Again taking two symmetrically positioned tanks and expanding only terms pertaining to the Jf → 0 limit, the total
perturbation is

Js(ν3, ε2) = Js(0) + δJs(ν3, ε2) + δJs(−ν3, ε2) (6.101)

= Js(0) + + eT
s 2mf






0

0

−ro(zt/yt)ztε2

0

0

0

−ro(zt/yt)ztε2

0

0






es .

In addition the shifted propellant induces a small vehicle mass center shift as

δcm = (mf/m)roν3 = − (mf/m)ro(zt/yt)ε2 (6.102)

resulting in a reduction of the tilt induced product by
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δJcm
13 = − mf(mf/m)(ro/yt)z

2
t ε2 (6.103)

and producing a residual product for two tanks

δJs
13 = kpε2 = 2mf(1 − mf/m)(ro/yt)z

2
t ε2 (6.104a)

ε2 = − (1/2)Tan−1{2Js
13/[J

s
11 − Js

33]} ≈ − Js
13/[J

s
11(1 − Js

33/J
s
11)] ≈ − Js

13/[J
s
11(1 − σ1)] (6.104b)

=
−Js

13 − δJs
13

Js
11(1 − σ1)

=
−Js

13 + kpε2

Js
11(1 − σ1)

=
−Js

13

Js
11[(1 − σ1) − kp/Js

11]
=

−Js
13

Js
11[1 − σ1 − δσ1]

= αεo
2

δσ1 = kp/Js
11 = 2mf(1 − mf/m)(ro/yt)z

2
t /Js

11 (6.104c)

α =
1

1 −
kp

Js
11(1 − σ1)

=
1

1 −
2mf(1 − mf/m)(ro/yt)z

2
t

Js
11(1 − σ1)

. (6.104d)

Migration of Propellant Between Tanks

Forming the position vector to the respective free surfaces in the tilted basisês,

ra
f = eT

s [0, yt + xa − δcm, zt]
T = eT

ŝ A2(ε2)A1(ε1)[0, yt + xa − δcm, zt]
T (6.105b)

= eT
ŝ [−ztε2, yt + xa − δcm + ztε1, zt − (yt + xa − δcm)ε1]T

rb
f = eT

s [0, − yt − xb − δcm, zt]
T = eT

ŝ A2(ε2)A1(ε1)[0, − yt − xb − δcm, zt]
T . (6.105b)

= eT
ŝ [−ztε2, − yt − xb − δcm + ztε1, zt + (yt + xb + δcm)ε1]T

The mass transfer is

δm ≈ πρ(r2 − x2
o)δx ,  (6.106)

with accompanying vehicle cm shift

δcm ≈ 2(δm/m)(yt + xo) = (2/m)πρ(r2 − x2
o)δx(yt + xo) .  (6.107)

Equating spin plane components of distance to the free surface from (6.101) yields

(xb − xa)/2 = δx = ztε1 − δcm = ztε1 − (2/m)πρ(r2 − x2
o)δx(yt + xo) (6.108)

so that solving forδx yields

δx =
ztε1

1 + (2/m)πρ(r2 − x2
o)(yt + xo)

while

δm ≈
πρ(r2 − x2

o)ztε1

1 + (2/m)πρ(r2 − x2
o)(yt + xo)

, (6.109)

and finally

δcm ≈
(2/m)πρ(r2 − x2

o)(yt + xo)ztε1

1 + (2/m)πρ(r2 − x2
o)(yt + xo)

. (6.110)

The product of inertia induced by propellant migration is
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δJs
23 = 2δm(yt + xo)zt =

2πρ(r2 − x2
o)(yt + xo)z2

t ε1

1 + (2/m)πρ(r2 − x2
o)(yt + xo)

= kpε1 . (6.111a)

Observe that migration does not alter the moments of inertia. Solving for the principal axis tilt amplified by migra-
tion

ε1 = + (1/2)Tan−1{2Js
23/[J

s
22 − Js

33]} ≈ Js
23/[J

s
22(1 − Js

33/J
s
22)] ≈ Js

23/[J
s
22(1 − σ2)] (6.111b)

=
Js
23 + δJs

23

[Js
22(1 − σ2)]

=
Js

23 + kpε1

[Js
22(1 − σ2)]

=
Js
23

[Js
22(1 − σ2 − kp/Js

22)]
=

Js
23

[Js
22(1 − σ2 − δσ2)]

= αεo
1

δσ2 = kp/Js
22 =

2πρ(r2 − x2
o)(yt + xo)z2

t

Js
22[1 + (2/m)ρπ(r2 − x2

o)(yt + xo)]
(6.111c)

α =
1

1 −
kp

Js
22(1 − σ2)

. (6.111d)

Summary of Propellant Wobble Amplification Effect

For a pair of two spherical tanks located on a diameter of the spacecraft the total wobble amplification effect
due to both migration and repositioning of propellant can be summarized by collecting the results of (6.93, 99, and
107) as follows.

Amplification In Tank Plane

kp = 2[Jf
33 − Jf

22] + 2mf(yt + ro)ro +
2πρ(r2 − x2

o)(yt + xo)z2
t

1 + (2/m)ρπ(r2 − x2
o)(yt + xo)

(6.112a)

→ 2mf(yt + ro)ro +
2πρ(r2 − x2

o)(yt + xo)z2
t

1 + (2/m)ρπ(r2 − x2
o)(yt + xo)

; J → 0

ε1 = +
1

2
Tan−1





2Js
23

[Js
22 − Js

33]





≈
Js
23

[Js
22(1 − Js

33/J
s
22)]

≈
Js

23

[Js
T(1 − σ2)]

≈
Js

23 + kpε1

Js
22(1 − σ2)

(6.112b)

≈
Js
23

Js
22[(1 − σ2) − kp/Js

22]
=

Js
23

Js
22[1 − σ2 − δσ2]

= αε1(0) = αε0
1

δσ2 = kp/Js
22 ≈ kp/Js

22 ; α =
1

1 − kp/[Js
22(1 − σ2)]

(6.112c)

Amplification Normal to Tank Plane

kp = 2(1 − mf/m)mf(ro/yt)z
2
t (6.113a)

ε2 = −
1

2
Tan−1





2Js
13

[Js
11 − Js

33]





≈
−Js

13

[Js
11(1 − Js

33/J
s
11)]

=
−Js

13

[Js
11(1 − σ1)]

=
−Js

13 + kpε2

Js
11(1 − σ1)

(6.113b)

=
−Js

13

Js
11[(1 − σ1) − kp/Js

11]
=

−Js
13

Js
11[1 − σ1 − δσ1]

= αε2(0) = αε0
2

δσ2 = kp/Js
11 ≈ kp/Js

11 ; α =
1

1 − kp/[Js
11(1 − σ1)]

. (6.113c)
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6.7 Mass Property Perturbation Due to Propellant Repositioning Under Vehicle Acceleration

Under axial acceleration the propellant in partially filled tanks will shift to alter the vehicle mass properties. A
simple case of spherical tanks is illustrated on Figure 6.7.

Figure 6.7  Propellant Mass Shift Induced by Axial Acceleration.
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zt
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es

ωs

zf
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ωs

δcm

θf
F

tanε = (F/m)/[(yt + rocosε)ωs
2] = (F/m)/[(yt + ro)ωs

2] = (F/m)/[ytωs
2]

In the simple spherical tank case the propellant mass and cm rotate about the tank center through an angle whose
tangent is the ratio of axial acceleration F/m to centrifugal acceleration of the spin field given as

tan ε1 = (F/m)/[(yt + ro cos ε1)ω2
s ] ≈ (F/m)/[(yt + ro)ω2

s ] .  (6.114)

The inertia matrix expansion given for a single tank in (6.90) is adequate for calculating the change in inertia
induced by propellant tilt. Note that the tilt angle is not necessarily small so the full expansion is retained.

δJs(rf1
, ε1) = δJf(rf1

, ε1) = Jf(rf1
, ε1) − Jf(0) (6.115)

= eT
s

⎡
⎢
⎢
⎣

0

− −
− −

−J12(cosε1 − 1) + J13 sin ε1

[J33 − J22] sin2 ε1 + J23 sin 2ε1

−J23(cos2ε1 − 1) − [(J33 − J22)/2] sin 2ε1

−J13(cosε1 − 1) − J12 sin ε1

− − − − − − − − − − −
−[J33 − J22] sin2 ε1 − J23 sin 2ε1

⎤
⎥
⎥
⎦

es

+ eT
s mf

⎡
⎢
⎢
⎣

2ytro(cosε1 − 1) + r2
o(cos2ε1 − 1) + (2zt + ro sin ε1)ro sin ε1

0

0

0

(2zt + ro sin ε1)ro sin ε1

−[ztro(cosε1 − 1) + ytro sin ε1 + r2
o sin ε1 cos ε1]

0

−[ztro(cosε1 − 1) + ytro sin ε1 + r2
o sin ε1 cos ε1]

2ytro(cosε1 − 1) + r2
o(cos2ε1 − 1)

⎤
⎥
⎥
⎦

es .

The total inertia perturbation due to two diagonally located tanks as depicted in Figure 6.7, omitting products of
inertia which will vanish, is

δJs = δJf(rf1
, ε1) + δJf(rf2

, − ε1) (6.116)

δJ11 = 2mf[2ytro(cosε1 − 1) + r2
o(cos2ε1 − 1) + (2zt + ro sin ε1)ro sin ε1] ≈ 4mfro[yt(cosε1 − 1) + zt sin ε1]

δJ22 = 2[J33 − J22] sin2 ε1 + 2mf[(2zt + ro sin ε1)ro sin ε1] ≈ 2[J33 − J22] sin2 ε1 + 4mfrozt sin ε1

δJ33 = − 2[J33 − J22] sin2 ε1 + 2mf[2ytro(cosε1 − 1) + r2
o(cos2ε1 − 1)] ≈ − 2[J33 − J22] sin2 ε1 + 4mfroyt(cosε1 − 1) .

The self inertias, Jii, are also typically small and the effect is of most interest when inertia ratio σ ≈ 1, leading to the
following approximate relations
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∂σ1 =
∂J33

J11
−

J33

J11

∂J11

J11
=

δJ33

J11
− σ1

δJ11

J11
≈

−4mfro[zt sinε1]

J11
(6.117a)

∂σ2 =
∂J33

J22
−

J33

J22

∂J22

J22
=

δJ33

J22
− σ2

δJ22

J22
≈

−4mfro[zt sinε1 − yt(cosε1 − 1)]

J22
. (6.117b)

The cm shift depicted on Figure 6.7 is

δcm = − 2(mf/m)ro sinε1

Denote the initial mass center 3-axis station as

zcm =
i
Σ(mi/m)zi

then the change in transverse inertia due to the cm migration is

δJT =
i
Σ[(zi − zcm + δcm)2 − (zi − zcm)2]mi = δcm

i
Σ[2(zi − zcm) + δcm]mi (6.118)

= δ2
cm

i
Σ mi = mδ2

cm = 4(mf/m)mf[ro sinε1]2 << 4mfro[zt sinε1] .

Inspection of the inequality in comparison to (6.117) indicates that the cm shift term is generally negligible.

6.8 Propellant Transport

When propellant is expended it is frequently transported to a different spin radius before expulsion through a
thruster. In this transport the vehicle (including propellant) spin inertia is altered, inducing a change in spin speed.
An expression for the combined thruster torque impulse imparted while mass and inertia are changing due to mass
expulsion and transport of propellant to the point of expulsion is, considering the spin axis component only

T3 =
d{I 33 ⋅ ωs}

dt
= İ33ωs + I33ω̇s = Frjαj (6.119)

where rj , αj are radial moment arm and alignment angle of the thruster. Approximatingİ33 as constant which covers
many practical cases, a time invariant linear differential equation results giving transform

[İ33 + I33s]ωs = I33ωs(0) + Frjαj /s (6.120)

ωs =
ωs(0)

[s + İ33/I33]
+

Frjαj /I33

s[s+ İ33/I33]
=

ωs(0)

[s + İ33/I33]
+ Frjαj /İ33





1

s
−

1

[s + İ33/I33]





whose solution is

ωs(t) = ωs(0)e−tİ33/I33 + Frjαj /İ33[1 − e−tİ33/I33] (6.121)

ωs(t) − ωs(0) = δωs = − [ωs(0) − Frjαj /İ33][1 − e−tİ33/I33] ≈ − [ωs(0) − Frjαj /İ33][t İ33/I33] .

Then expressing mass flow rate and the inertia derivative as

dm

dt
=

d

dt





Ft

gIsp





=




F

gIsp





(6.122)

t = [gIsp/F][mf − mi] = [gIsp/F]δm (6.123)

dI33

dt
= İ33 = (r2

j − r2
p)

dm

dt
= (r2

j − r2
p)

F

gIsp
. (6.124)

In this expression mi, mf are initial and final propellant mass on board assumed equal (or average) at radius of rp, rj
is the radius of propellant expulsion, T3 = Fαj rj is thruster spin torque, and J33, I33 = J33 + mfr

2
p are vehicle spin iner-

tias without and with propellant respectively. The spin rate change can be expressed in terms of mass change and
independent of time as
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δωs ≈ − [ωs(0) − Frjαj /İ33]




[mf − mi](r
2
j − r2

p)

I33





= − [ωs(0) − gIsprjαj /(r
2
j − r2

p)]δm(r2j − r2
p)/I33

= − ωs(0)δm(r2j − r2
p)/I33 + gIsprjαjδm/I33 = − ωs(0)δm(r2j − r2

p)/I33 + Frjαj t/I33 . (6.125)

Another approximate approach for integration of (6.119) follows by eliminating the time variable below. Write

İ33ωs + I33ω̇s = ωs(r
2
j − r2

p)
dm

dt
+ (J33 + mr2p)

dωs

dt
= Frjαj = gIsprjαj

dm

dt
(6.126)

then rearrange and integrate as

dωs

ωs(r
2
j − r2

p) − gIsprjαj
=

dm

J33 + mr2p
(6.127)

ln







ωf −
gIsprjαj

(r2
j − r2

p)

ωi −
gIsprjαj

(r2
j − r2

p)







=
(r2

j − r2
p)

r2
p

ln




J33 + mfr
2
p

J33 + mir2
p





yielding finally

δωs = ωf − ωi = [ωi − gIsprjαj /(r
2
j − r2

p)]











J33 + mfr
2
p

J33 + mir2
p





[(rj /rp)2 − 1]

− 1







(6.128)

= [ωi − gIsprjαj /(r
2
j − r2

p)]











I33

I33 + δmr2p





[(rj /rp)2 − 1]

− 1







≈ [ωi − gIsprjαj /(r
2
j − r2

p)]




−δm(r2j − r2
p)

I33





; δmr2p/I33 << 1

= − ωiδm(r2j − r2
p)/I33 − gδmIsprjαj /I33 = − ωiδm(r2j − r2

p)/I33 + T3δt/I33 .
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