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INTRODUCTION

Contained in the material following is a derivation and selected solutions of the rotational dynamic equations
of motion for a dual-spin spacecraft and single spinning body spacecraft are covered as a subset. Since the class of
body-stabilized spacecraft often have momentum bias, intentional or otherwise, much of the material applies there as
well. The material has been developed, collected, and compiled by the writer over a period of several years. It
arises primarily out of the writer’s desire never to work the same problem twice, hence each solution is systemati-
cally recorded the third time it is obtained.

The treatment of vectors, matrices, inertia dyadics, and coordinate system (vector basis) accounting through-
out is after that described in Ref. 34, Sect. 2 and/or Ref.35, Appendix B.
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1.0 Momentum Derivation
The spacecraft system angular momentum with respect to an inertial point is expressed generically as

H= J.(ro+r)><(fo+'r)dm (1.2)

where r, is the position of the vehicle mass center with respect to an inertial point and r is the position of the dual-
spin spacecraft platform and rotor mass elements. Using definitions of r;, u; given by Figure 1.1, the total momen-
tumis

H=H,+H, (1.2)

with components

Hp = J.(r0+ Mo+ Mp) X (Fo +p + f,)dm
P

=mp(ro+rp)x(ro+fp)+jupxp,pdm (1.39)

=Mp(roXfo+ToXFp+pxFo)+my(ryxrfy) + Jupx;lpdm,

and

HS=J(r0+rs+us)x(fo+fs+g9dm
R

=mg(ro +rg) X(fo+rg) + J-p,sx;lsdm (1.3b)

=Mg(roXTo+ FoXFg+TgXTo) + My(rgxrg) + jusxpsdm .

The sub-s and sub-p are used hereafter to denote properties of the rotor and platform respectively. The vectors p,; are
assumed fixed in the respective bodies and the center of mass definition, fusdm =0, has been used repeatedly in

going from the first to the second form above. We shall immediately simplify by assuming both bodies statically
balanced, mass centers on the common bearing axis, and denote the resultant restricted body cm positionsasrg=r;
andr, =r,. Theresult of thisisthat both body cm position vectors are fixed in the respective bodies.

Platform Mass Element

p1
u Spacecraft cm
D Rotor cm €_, Rotor Basis
mg, Jg S
Platform cm <
My Jp

® Inertial Point

Figure 1.1 Dual-Spin Spacecraft Mass Model.
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The inertial angular rates of the bodies are denoted w;. Then, computing theinertial time derivative

)

. d

= dltls + WX g = O X Mg (1.4)
S

. r

r1:d—t1+ms><r1:oos><rl (1.5)

S
dv . . L . .
where 3 indicates differentiation in a rotor fixed basis. The rotor momentum can then be expressed as

He=mg(roX o+ rgXfqg+ryxXrg) + mg(rqxrq) + J.usx[msxp,s]dm

=Mg(rgXTo+ogXTq+ T XTg)+Mg(ry xX[sxrq]) + Jg- 0. (1.6)
=Mg(roXfo+ogXF+T1XTg)+ g 0.

In the preceding J; denotes the inertia dyadic of a body with respect to the body cm, while I; denotes the iner-
tia dyadic with respect to the vehicle cm. We shall attempt to hold to this convention in the following text. Theiner-
tiadyadic isintroduced to represent the integral term as follows:

[ rexooxuddm = [[(ke- mws — (g @Iuddm = [[(1s HIos ~ He(he- @AM (L7)

= [k YU~ 0~ futg @dm = { (e mIU — paptJdmi - o,

U is the unit dyadic defined to facilitate factoring s from the integral. In this writer's experience it is almost never
necessary to expand the details of the dyadic(see Ref. 1, p. 419), however the dyadic notation is extremely useful in
analysis.

Replacing r, with r, in Eq. 1.3a and carrying out the same manipulation yields the companion platform
momentum expression,

Hp=my(roXro+roXiy +TaXEo) + My(rox [0y Xr5]) +Jp - @,
=My(roXTo+ToXTo+TXT) + 1, - 0. (1.8)

Next we choose appropriate vector bases and define some required vector components. We define a vector
basisin the form
el =[eq, e gl (L9)
where the elements are unit vectors aong the three right handed orthogonal coordinates of basis e;, similar to the
i, J, k triad once frequently used. With this notation a vector v in e iswritten
v=el v=el[vy v, Va]"

Vi
=[x, €p eg]| V2 |= Vi + Vo€gp + Vaeg.
V3
Aswith the dyadic, we will never find it necessary to expand the basis as is done here to clarify the meaning.

Now we choose a rotor fixed basis e; with 3-axis along the spin axis, positive toward the platform, and the
remaining two axes forming a right handed triad. Further, a platform fixed basis is chosen related to the rotor basis
as

cosy siny O
&=B(y)g,=| —siny cosy Ofg,. (1.10)
0 0 1
With the notation just set up the basis that the scalar components of a vector are expressed in are always evident, for

example v =elv immediately means the components of v are expressed in e, Also, it is systematic and
12



straightforward to transform from one basis to another. Again for example, transposing Ee{ 1.&3]3(w)T and

this can be substituted directly to obtsir elv = egB(LIJ)TV so that the elements ufin g, are immediately evident

as B(p)"v. Finally, we claim that inertia matrices, dyadics, and vector bases are handled systematically with this
notation. To demonstrate, lef Be the rotor inertia matrix(Ref. 1, p. 420), ahdbe the corresponding inertia
dyadic. Then,

Js = el ke,

and if one wishes to express this inertia in the platform basis(rotate the matrix to a new coordinate system), it is
again straightforward to substitute farfrom 1.10 getting

Js = e B(W) IB(W)ep,

so that BQ)"JB(y) is the rotor inertia matrix expressed in the platform basis. Next we introduce the matrix repre-
sentation of the vector cross product as

uxv=euxev=etv=-eiu (1.11)

oo -uz w O
~:D —u 2Tt V] = M'NN:NNT va
a DU3 0 ulD’ [U+V] =[u+v] ; Gu=[VDd]' #Vd,
ouwL W 0g
and remark for future reference that|i # [B(y)u] "
Referring to 1.10 again, we denote the relative angular velocity between rotor and platform as

0 = W - 6, =el[0,0,w]" =€l[0,0,U]". (1.12)

It is noteworthy that a large fraction of the analysis of any given problem can be done without ever choosing
the vector bases. Only when one wishes quantitatively to fix the components or impose certain system constraints
need the bases be chosen. We have chosen the 3-axis of rotor and platform bases in our dual-spin vehicle by virtue
of (1.10) to coincide with the bearing axis constraint and used this in (1.12). However, the 1 and 2-axes in both bod-
ies remain arbitrary for the present. Now various previously defined vectors are assigned in their respective coordi-
nate bases as follows:

He = elHq (1.13a)
0 = €50 (1.13b)
re=elrg (1.13¢)
Js = el e (1.13d)
ls=ellse (1.13e)
and similarly for the platform
Hp = eyHp (1.14a)
Wy = 0 (1.14b)
fp =&l (1.14¢c)
Jp = Jep (1.14d)
lp=ellpe, . (1.14e)

13



Using the above definitions and taking r, = O, Eq. 1.6 isrewritten
Hs= e-ers= elees’e-srws_ mselrlx[elrlxe-srws] (1.15)

= e;-[szs - msflflws] = e:sr[Js - msflfl] (e e-srlsws

from which we infer

IS = ‘]S - msflfl , (116)
and
Hs = lsos = [Js — mgf1F1] 0 (1.17)
gives the components of rotor momentum Hg in the rotor fixed frame e;. In similar fashion
Ip = Jp - mpTzfz y (118)
and
Hy = lpmp . (1.19)
The total angular momentum with respect to the vehiclecmiis
H=Hs+Hy=ls @5+, @, =ellsos+ 0,
=63 [BT I + 1 ,0p] = €l[1ss + Blyay] - (1.20)
Noting that
0s=el0g= @, + O = & 0, + el oy = el [Bw, + o] , (1.21)

where the liberty is taken(see Eq. 1.12) to let the symbol w, represent the three-vector o, = [0, 0, m,]" and its 3-axis
component. Similarly,

Oy =8 0y = 05— 0 = el[os— o] =g [BTos— o] . (1.22)
We have freely used the special nature of o, = BT, = Bw, in the preceding two equations. Next, using Equation
1.21in 1.20%,

H = el[IsBwy, + ls0; + Blowp] = &7 [BTIBwy, + BTl + 1,0p]

= e [{l, + BB}y + BTl ] =gl HP (1.23)
giving an expression of total vehicle angular momentum in terms of platform and relative rate in either coordinate
system. Using Equation 1.22 in 1.20 gives the parallel casein terms of g and w, as

H = )[BT Isos — 1,0, + 1,BT 0] = el[lsws — Bl + Bl B o]

=el[{ls+BI,B"}os— Bl,ay] = elH°. (1.24)

Theinertia matrix is developed in terms of basic scalar integralsin Ref. 1, p 417. Herein, we denote the elements of
an inertiamatrix as

L [P I
= -l 1 |, (1.25)

—liz -l Iz
wherei = s, or p respectively for rotor or platform. At thisjuncture it is appropriate to dwell on the conventions for
the elements of the inertiamatrix. The diagonal elements|;; = J x;y;dm are aways positive so give rise to no confu-

sion. For off diagonal elements we have inserted a negative sign in (1.25) and when scalar expansions of equations
are carried out this sign is retained. This means that when substituting for Ij; in a scalar expansion in this docu-

ment(and in most cases around Hughes) one should substitute J.xiyjdm. At this writing(January 1988) this is the

1 Note the subscript on Hp denotes the platform momentum only, while the superscript on HP indicates the compo-
nents of total vehicle angular momentum in platform basis €.
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number consistently reported by Hughes mass properties for product of inertia. Now, when the numbers are inserted
in a matrix and used as in Eq. 1.24, say in computer matrix manipulation, the negative sign must be overtly inserted,

i.e., the off diagonal elements ig I, of (1.24) must be- [ x;y;dm. To repeat, the off diagonal numbers supplied by

mass properties must be negated before substitution in a matrix, but may be used directly in scalar expansions
herein.

Before proceeding to the torque equation, we digress to note some convenient properties of H under certain
mass property constraints on the rotor and/or platform. The tétgB Bnultiplying wy, in the second form of Eq.
1.23 is the time-varying rotor inertia seen in platform coordinates, which expands as

01 -l 1150
BIIB=LLT5, 15, -I5U (1.26)
D TS TS TS D
0z s Iz
OS5, +AlgsirP @ +15,sin2p - ————-———-——- --0
= B—lizcos - (Alg2)sin2p 135, - AlgsiP g - I5,sin2p —-L,
0 —I15zcosy + 135siny —135cosy — I33siny 135 O

Equation 1.26 shows that if the rotor is symmetric (transverse inertias equal imfllyn¢;, = 0) and is dynami-
cally balanced (products of inertia vanish, # 135 = 0), then BI,B = I.. Also, dynamic balance alone is sufficient
to render Bl.w, = Iy Thus, for the but important special case

H = el s(wp + @) + 1,wp] = g5 [(1s + 1p)a, + 156y] ; (symmetric and balanced rotor) . (1.27)
Similarly, with the same constraint imposed on the platform, the momentum in rotor coordinates reduces to
H = el[l s + Ip(ws — )] = el[(Is + 1) — [,04] ; (Symmetric and balanced platform) . (1.28)

Expanding the total system angular momentum in platform coordinates in tesgard o

018, + 150001 + [~15, = Tl o + [18; = T3]3 = 13500 O
HP = 519, = Tl + 115, + T3alo + [ 155 = T3l eps = T35 (1.29)

E["Es - I7?3]00;31 + ["gs - I723]0%2 +[1 23 +135] 03 + 1330

_ _ Al . .
E[' 11+ DlgSi? @ + 15, sin ApJao,y + [17, = 15, cos 2p - — sin ]y, = [I73cosY = 13z siny][wys + wy] - |23®p3%

= E{—IEZ - 13,cos 2 - % Sin 2PJwpy + [1 22 = Al Sin? g = 15, Sin ]y, — [135C0SY + 135 SiNY][ w3 + ] — |23%3§
E [~155 = 1330S + 155 sinW]wp; + [~155 = 153c08P — 135 sinW]wp, + 135[003 + 03] + 55003 E
where
i =15 +13 (1.30a)
Bl = thy =1y . (1.30b)

The parallel expansion in rotor coordinates is obtained by exchangamgl I, replacingw, with ws, and replacing
oy, with =y in Equation 1.29.

15



2.0 Dual-Spin Toque Equations
The torque equation is derived by first differentiating the first form in Eq. 1.20.
T=H =100+ 1500 + 1, [y, + 1, [y, . (2.1)

The dyadic derivatives expand as

S

isz%+(,.)Sx|S—|S><(,.)S:(,.)S><|S—|S><(,L)S (2.2)

where®d/dt indicates differentiation in the frame and the first term abe \anishes becausg ik constant in this
frame. In the same fashioh, = w,x1, -1, xw, When substituted in Equation 2.1, bolthx ws[tos and
I, X 0, [y, vanish because they are inner products of orthogonal vectors. Hence,

H:wsxls&)s+|s|]bs+wpxlp|]op+lpﬂbp. (2.3)
Now we want the matrix formulation &f. First it is obtained in terms of, andawy, , using
W = @, + o = gfoy, + el = el[Buy, + W], (2.4)
and
Sdods Sdoos .
QS:W+Q)SXQ)S:T:el(bS:e1[BQ)p+BQ)p+&){], (2.5)

Equation 2.3 becomes
H = el{[ Ba, + ]I [Boy, + 0] + 1Bay, + BGy, + 6]} + €] [6p1 00 + 15y
= e {BT[Bw, + @]l [Bw, + wy] +BTI[Boy, + By, + 6] + Gplpwp + 1560} =g)H”  (2.6)

= e { @pHP + BTGYI B, + 03] + BTI[Bay, + By, + ] + 150y]
where the last form with Hs obtained using the kinematic identhA)p = BGJpBT.
Now apply torques in the notation

H=To+T,=elT + €T, @2.7)

such that
eH =6l [BTT,+T,]. (2.8)
Substituting Eqg. 2.8 in 2.6, premultiplying both sidesghyand solving foka,, the result is
@, =1, + BTIB]™{ - BT[Bw, + &]I[Bw, + 0] — BTI[Bew, + ] — @plpe, + B T + Ty}

=, + BTIB]™{ - &HP - BTaxIg[Boy, + 03] — BTI[Bw, + @] + B Ts+ T} . (2.9)
Repeating the derivation of Equations 2.4 to 2.9 in the rotor basis and expressing in teysrsdof, ,
Wy = 6w, = e[BTo ], (2.10)
P
. d . . . .
dop =~ = i, = el[BT + BTix — 3] (211)

H = el{ Gyl + 1660 + B[(BTwy) - @]1,[BTox — ] + BI,[B s + BTéo, — i} = elH°

= el {uH® - B&y (B o, - ] + BI[B o, + BTG — 6] + 166}, (2.12)
and

ws = [Is + BIpBT]_l{ - B[(BT(*)S)~ - (I)r]l p[BT(*)s - (*)r] - Blp[BTws - wr] - d)slsws + Ts + BTp}

= [ls + BI,BT ™ — wH® + By I [BTew, — @] — BI[B wy — ca] + T + BT} . (2.13)
2.1



Taking the rotor and platform individually as free bodies

Hs = el[@4lsos + 15 = el[6Hs + 156 = elHs = Ls = elLs (2.14)
0 = 15 -Gl + L] = I57[-63Hs + L] (2.15)
Hp:eg[a)p|pmp+|pmp] = gl [GH, + o0l =€l H, =L,y =6lL,, (2.16)

@ = 1 [=Gplpwy + L] = 15 {=6Hp + L] (2.17)

where L and L, denote torques applied to the rotor and platform in their respective bases.

Using the kinematic identit§ = — &B, which can be verified by direct substitution, the following accelera-
tion expressions are obtained from Equations 2.9 and 2.13.

mp = [Ip + BTISB]_I{ _G)pHp - BT[d)rls - Isd)r]B(*)p - BT[G)I'IS(*)r +1s0y] + BTTS + Tp} ) (2.18)
and
ws = [ls + BIpBT]_l{ _G)SHS + B[(I)rlp - Ipa)r]BTws - B[G)rlp(*)r - Ipd)r] +Ts+ BTp} : (2.19)

Now the terms of Equation 2.18 are listed in detaif. hids already been given as Equation 1.29. The coeffi-
cient ofw, in the second term is

o2h, -- --0
BI[Gxls — 1s64]B = &4BTIB - BIBGy =i - 15, -2, --1 (2.20)
O Tgs ‘ﬁs 0po
[RIf,cos 2P + Algsin2dp —--—--—--—~- --0
=w,% 3,s8inAP — Algcos2p  —2I5,cos 2p — Algsin AP ——B,
0 15zcosy + I35siny —135cosy + 135 siny 0 g

wherefﬁ denotes rotor inertia elements expresseg} jn.e., the elements of (1.26). Missing terms in (2.20) are sup-
plied by symmetry. The third term in Equation 2.18 is

BTGl sor + 160x] = oI35, — 173, 01" + Gy[ T35, — T35, T3a] " (2.21)
Ol15zcosy + 153sing O [FIfzcosy + 155siny 0

= 2E—Ii3005q.|+ 153sinW +(orD—I Sscosy — 3sinwg
O 0 D D 133 O

Lastly, the three scalar equations from (2.18) and the 3-axis equation from Equation 2.15 are expanded in detail as
Equation 2.22. As noted before all of equations (2.20) through (2.22c) transform to rotor coordinates by exchanging

I, for I, ws for wy, , and—ow;, for wy. This exchange in Equation 2.22d produces the 3-axis equation of (2.17).
Some comment on application of torques is in order at this point. When wé,aeHls = H in Equation 2.1,

all internal torques cancel. Therefore, internal torques, such as the despin torque, do not appear in the various forms
of Equation 2.1, e.g., Equation 2.18, 2.19, and 2.22a - c. Instead, internal torques appear as driving torques to the
free body equations (2.14), (2.16), or (2.22d). Note that transverse axis internal torques are meaningless, except to
determine internal structural loads, as the rotor and platform are constrained to be relatively fixed about these axes.

Conversely, external torques do appear in both the appropriate free body equation and Hheespration. For

example, the Adamsledamper model applies external rotor spin down torque which must appear in (2.22c and d).

However, note that a platform external spin torque will appear in Equation 2.22c only.

11DC 4113.10/346, "Dedamper Simulation Model," G. J. Adams, December 4, 1973.
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[111 + Algsir? ¢ + 15, sin 2] oy =

[5, +15,cos 2y + Bls i APJopy + [175 + 133 c0SP = 153 SiNY] oy

— 135[wp3 + W]y + [122 = 155 = Alssin® g = 13, Sin 2P]wpowp3

+ 195 + 133c08W = 153 SiNW] Wy + [155 + 133C0SY + 53 sinP]wh, (2.22a)
- [, +15,cos 2y + AZIS sin P] w100z — [I33C0SY + 133 siny][ w3 + w]? - I23wp3

- [213,c0s 2 + Algsin APJoxwy; — [213,Sin A — Algcos 2P]wrwy, + [1$3c0sP — 153 sinP] oy

[122 = Alssir? ¢ — 15, sin 2p]éop, =
%, +15,cos 2p + ﬁ sin 2p]éay + [155 + 133cosy + 55 sinW]éoys
+ 155[wpz + @r]wpy — [111 — 155 + Algsir? @ + 15, 5in 2] 03,1003
— [155 + 155cosW + 133 SinW]wyiwy — [I55 + 153c0SY — 135 sin]wh; (2.22b)
+[17, + 13,008 2p + % sin ] epo003 + [133COSY — I33SinW][ays + W] + 155085

—[213,sin 2p - Algcos 2]y wy; + [215,€0S 2 + Algsin APy wy, + [133SiNY + 153 cosy]

1336053 = [115 + 133c0SY ~ 153 SinP] oy

+[155 + 155 cosy + 133 Siny] o,

[111 = 1oy + 20l Sin? @ + 2155 Sin 2] 03,1002

+ 15 300n10p3 = 17500500003 = 15300 (2.22¢)
+[1%, +15,c0s 2p + % sin ][ wh; — Wiyl

+[133cosy + 133 SinP]wyi s — [173C0SP — 153 SiNP] w03

35[0z + @] = [I133C08W — 135 sinW]opy + [1T3SINY + 135 coSW] Gy
— [Alscos 2 — 213, Sin AP]edp;03p2 + [133SINY + 153 cOSP] 6103 (2.22d)

. Alg .
- [133cosy - 135 siny]wy0p3 — [13,C0S 2 + — sin ][ w5, — 0]
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2.1 Simplifications of Dual-Spin Togue Equations
2.1.1 Dynamically Balanced Rotor

Several steps of simplification may be carried out on (2.22) to obtain a much more tractable model for analy-
sis. First we assume rotor dynamic balance, which removes the dominant sinusoidal driving torques of (2.22), then
rotor symmetry is imposed which renders the system linear and time-invariant, and decouples the rotor equation
(2.22d) from the remaining three. Lastly, requiring the platform to be dynamically balanced as well decouples the
spin axis dynamics (2.22c) form the transverse axes.

Rotor dynamic imbalance produces first-order sinusoidal dynamic torques on a the dual-spin vehicle propor-
tional to the product of imbalance and the relative rate squafedThese torques can be identified as the seventh
major term listed in Egs. 2.22a and b. Assuming dynamic balanc®, fet3; = 0, and set3l, = 0 by choice of vec-
tor basis subsequent to the dynamic balance condition. Then Eq. 2.21 shows that

BTGyl + 1s@]" = [0, 0, Bsln]" . (2.23)
Using Gy = (3 — Wy and rewriting Eq. 2.18,
[1p + BIsB]dy, = —GpHP — BT[6yls — 1s63]Bwy, + BT Tg + T, = [0, 0, B3(Goz — Gya)] ™ - (2.24)
Now let
oo o0 00O
I=[I,+B"IB] - go 0 0 B- (2.25)
00 0 130
Then
@y = 17 =GpHP = BT[Gxls = 1s0x]Bwy, = [0, 0, Babasg] " + B Ts+ Ty} . (2.26)
For rotor spin axis dynamics Equation 2.15 provides
W3 = We1 0157 — 13]/133 + L35 - (2.27)

2.1.2 Dynamically Balanced and Symmetric Rotor

If in addition to £5 =155 = 0 (balance), we havé, - I5; = Alg = 0 = I3, (Symmetry), then Equations 2.26 and
2.27 reduce to

@p = 17{ = @HP - [0, 0, Baixsd "}, (2.28)
and
W3 = Lgofl33s (2.29)
where | is now constant (BB = I) and given as
of +13, 1Y, 50 Ol —lip —lis0
I = E -1, 1513, -5, %: B—IlZ lpp —log ™ (2.30)
O _|E3 _lgs |23 0O s —las |'3)3 0
and H is greatly simplified to
HP = lwy, + [0, 0, Bawsg] - (2.31)

Now let T;, T, be external transverse axis torquegh& the internal spin torque applied to the platform, and
T3, TR be respectively external spin torques applied to the rotor and platform. Then expanding Equation 2.31 and
2.28,

1110p1 = 1126002 + 113003 + 11300010052 = 1120p10p3 + [ 22 = 1551 Wpot0p3 + |23[0052 - 00;233] = 1330055005 + Ty (2.32a)
| 220p2 = 112601 + 1230053 = 123000102 + 1120p20p3 = [111 = 1551 Wp100p3 + |13[®,233 - 0031] + 1330055001 + T (2.32b)
1550003 = 1130051 + 1236002 + | 230103 = 1130520003 + [111 = 122l 001Uz + 112[0H1 = 0Pyl — 133603+ To + TR (2.32¢)
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I;S>,3(.*)s3 = _T3 + TZ . (232d)

We note in passing that the rotor dynamic imbalance, or wobble, torque is often reintroduced in (2.32) or
(2.34) below by including in torques,;,TT, the terms (obtained from the seventh term in 2.22a and b, or the first
term of 2.21)

W1, Wo]" = - w?(155° + 135°) [cosat — @), sin@t - @) (2.33a)
with
@=Tan {15413} . (2.33b)

2.1.3 Linearization

To simplify the notation in further reduction of (2.32), we write the platform inertial rate vector as
[0, Wy, w3 + wp]T, dropping the sub-p, letting the scalar constantienote a nominal platform 3-axis rate, and
represent deviations from this rate. Also,dgt = ws + Aws, Wherea is the constant nominal value. In Appendix
A the dual-spin equations are linearized allowing non-zero transverse rates. Here we give the simpler case of lin-
earization about [0, @] andws which yields

111001 = 11560 = 113003 + 11505001 + 113A1 Gy + 2p30p0s = = lp305 + T4 (2.34a)
12200 = 112001 = 153003 = 1150500 = I2pA 00y = 2l13Wp0s = 14365 + T, (2.34b)
155003 = 11363 = 153005 + 11300500 = 123005001 = = 133003 + T3 + TH (2.34¢)
13503 = —T3 + T3 (2.34d)
wheré
Ap = [1350s + (155 = 122)wp)/l 11 = 0100 = (I22/111)wp (2.35a)
Ao = [1350s + (155 = 11)@pl/1 22 = O = (I11/122) Wy - (2.35b)
Substituting (2.34d) into (2.34c), the resultant linear time-invariant system can be written
P(sylw=T (2.36)
where
w= [('011 ('02! (*)I]T (237)
T = [Ty = 305, To + ly305, T3+ TE]T (2.38)
and
O[S+ lpeyp]  =[lios=113A1]  —[l135 = 2ly300,] O
P(s)*t = g‘[l 125+ 1oMo]  [1228 = 1owy] (1238 + 21300] g (2.39)
23S + lozwp]  —[1238 = 1130y 1558 0

P(s) is the matrix of linearized spacecraft (plant) dynamics. The elements of P are expanded as Eq. 2.40, and a sys-
tem diagram of the complete linearized rigid body dynamics is shown on Figure 2.1. Equation 2.34d has also been
diagramed on Figure 2.1.57s the internal 3-axis (despin) torque and all other torques shown are external.

! Note that forl 11 =I5, Ay = Ay = Oglds — W)y = O, — Wy = Ag — Wy, = H/ly — @y, assuming momen-
tum conservation in the spin axis (3-axis) during platform spinup.
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Pry = {[l 22155 = 13315 — [112155 + l1al2al @S + 2135000}/ A (2.40a)
Pio = {[l 12155 + 113l 23]S* = [155l10A1 + 0p(153 + 2153)]s + 21430530051 A (2.40b)

Pz ={[l 13l22 + |12|23]52 = [T2sl11Ag + Wp(2la3l 22 = 112113)]S = 201 13112A1 = 1ol 23w} A (2.40c)

Por = {[1 12155 + 113l 23] + [155120A2 + (2135 + 153)]s + 21131530051 A (2.40d)
Poo = {[I 11155 = 13a]S” + [1 12155 + 113l 23] @S + 2155651 A (2.40e)
Paz = {[l 2311 + 1121131 + [113122A2 + (213l 11 = 112123)]S = 2wp[1 23 202 = 121 1300p]H A (2.40f)
Pay = {[l 13l 22 + 120 23]S + [1 23l 20A5 + Wy(l23l22 = 2l15l13)]s = W[l 13l120A5 + 112l 2300 ]H A (2.409)
Pao ={[l 23111 + |12|13]52 = [11al1aAg + wp(l1alag = 212l 23)]S = W[l 23l 11Ag + 11211303 ]}H A (2.40n)
Pys = {1 11122 = 132]8% + 1111 20A1 A5 = 15,65} A (2.40i)

A(S) = [111l 22155 = 111135 = 122135 = 155132 = 2112l 13123)S°
+{l 11221 5A A2 + W[l 11A1(2155 + 135) + 12202(2135 + 133)]
+ 00;2)[2| Tal11 + 2035155 — 135155 — 6132l 13l 5]}s
+ 2003[' 13l23(111 = 122) + 112(135 = 139)] - (2.40))

Inverse Laplace transforms of a general plant element for doublet, impulse, step and sinusoidal torque inputs
are respectively tabulated below ushfg: MAL/(1 - ) where r is defined in 2.47 below.

Plant Doublet Response

SR = [As® + Bs+ CJ/[s* + A)] = A + [Bs + (C = ASA)/[s + AJ] (2.41a)
f(t) = A3(t) + B coshyt + [C/A, = A Al sinAt (2.41b)
Plant Impulse Response

=[As? + Bs + CJ/[s(S + AJ)] = A[s/(S° + A)] + B[L/(S + A9)] + [CINJ][L/s = SI(S + AD)] (2.42a)
f(t) = [A = CIAT] cosAyt + [B/A,] sinApt + C/A; (2.42Db)
Plant Step Response
Pi/s=A[LI(s* + A3)] + [B/NJ][L/s = /(S + AJ)] + [CIAZ][1/S® = 1/(S" + AD)] (2.43a)
f(t) = [A/N, = CIN3] sin At + [B/AZ][1 - cosA,t] + [C/AZ]t (2.43b)

Plant Cosine Response

As? +Bs+CLy s . As®+Bs+C

Fe)=0 0 SE@+A3) gF+w0 (P +A)(S +u) (2.44a)
f(t)(w? — A2 p) = B[cosAyt — coswt] + [(C - AN2 p)Ap]sinAt = [(C - Aw?)/w] sinwt (2.44b)
Plant Sine Response

Fe)=0 it et (2.45a)

0 SE@+23) [AF + w20
f(t) (w? )\g) = C[(w? = M)AZ0lu(t) + [(AN; = C)ulA3] cosA,t (2.45b)
- [(Aw? - C)/w] coswt + B[(w/Ap) SinA,t = sinawt] .
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The part of the system of most frequent interest is the plant elements which respond to despin torque. This
portion is diagramed separately on Figure 2.2. In analysis of the despin loop ugualtyand i, = 0, (or inten-
sionally by choice of basis). Making these simplifications

l11A1 = 12272, (2.46)

and the plant elements of Figure 2.2 reduce to
P13 = |225[|13S - |23>\2]/A (247a)
P23 = |115[|23S + |13>\1]/A (247b)
P33 = |11|22[SZ + )\1)\2]/A (247C)

with

A = 111001551 = NS[S” + MA(L = 1)] = 14150l 55(1 = 1)S[S + A7] (2.47d)
r=[l1133 + 122153l 11122155 - (2.47e)

If in addition hy = 1, = V111l = |7, thenAy = A, = A, = A, = 13;3w4/l1, and corresponding simplifications result is
(2.47). Also we often require the plant dynamics for small linear perturbations in rotor to platform relatiwg rate,
given by

o _ [ws — ux]
ng = Ts =- 1/|§33 - Pg3= (2.47%)
Pag = = [l 122/ 1351 Ba(1 = 1) + 13518” + [155(1 - r)?\ﬁ +13A AN A

A second case that is significantly simplified results with# 0, and imposing transverse inertia symmetry
such that{; =1y = Iy, and k, =0. Then; = A, =A = H/ly — wy = A, — W, and

Pis = Ir{l 155 — Ioa[A + 26]s — 213 5Aa})/ A (2.48a)
Pas = I{l 255 + l13[A + 2y]s — 2lpzh0,}/ A (2.48b)
Pss = I3[s* + A?)/A (2.48c)
with
A=1315,(1- r)s%z +[A% + r(3hoy, + 260)1/(1 - r)gz 171551 = Ns[S” + A7) . (2.48d)

The new expressions far A, can be substituted in,£to get the relative rate plant with platform motion.

2.1.4 Uncoupled Linearized Spin (3-Axis) Dynamics and Despin Motor Model

Figure 2.3 shows a model of the 3-axis (despin) dynamics with motor and bearing dynamics includgd. K
are motor back emf and viscous friction constants with appropriate units and the motor inductive time constant has
been assumed negligibly small. i the control torque command to the motor and some useful relations for com-
mand and disturbance inputs are tabulated. This model assumes a statically and dynamically balanced rotor and
platform, which is adequate for most preliminary analyses where cross-coupling (nutation, coning, wobble, etc.) is
not considered. When cross-coupling is of interest, it can be shown that the effect of the motor and bearing is
closely approximated by placing the function s/(®,) between T and T; of Figure 2.2, i.e., the motor-bearing lag
displaces the rigid body pole slightly from the origin. Figure 2.4 shows the model of Figure 2.3 embedded in a typi-
cal spinning sensor referenced despin control structure. In this structure rotor to platform relative rate (or angle) is
measured, say by shaft angle encoder pulses, and fed back in a high bandwidth inner loop through compensation
F1(s). A lower bandwidth outerJ(s) measures position, perhaps with sun or earth sensor pulses, and closes a posi-
tion control on platform angle. The local loop aroundd representative of a phase-lock loop that smooths the sen-
sor pulse train.
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Figure 2.1 Dual-Spin Spacecraft Linearized Rigid Body Dynamics.

A=1+L(s)
= 1+ F[R4S] + G[K;P;3+ K,Pyg
W,(8) = [-FN, - GN, + D;]P; /A
Wy(8) = [-FN, - GN, + DyJP,o/A
Ws(8) = [-FN; - GN, + Dy][P34/s)iA

Nqp

2 F(s)

— — — —— — — ]

G(s)
| — P4(s) ' : K,
|
| | N
|
| P,4(S) “2 i Ky
|
. |
L T 8
3 03 1 p |
z\i P33(S) < |
| .
o |
| b S A
Dy | 2 s |
|
I 1 Ws | 1 55
| — ST|33 4@ S I
| _ Dynamics “so I

Figure 2.2 Dual-Spin Spacecraft Linearized Rigid Body Spin Axis Dynamics.
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Figure 2.3 Model of Motor, Bearing, and Spin Axis Dynamics for Dual-Spin Vehicle.

2.1.5 Dedamper Models

It is frequently useful to model some form of nutation damping or dedamping for analysis or simulation. The
simplest such is to feed back a damping torque proportional to transverse rate, say T, = Ky = (2/14)®,. This par-
ticular model does not conserve angular momentum. The Adams dedamper described next does not conserve
momentum instantaneously, but does conserve it over one spin cycle, or on the average. It is a very simple model
that is efficient and easy to use, and conserve momentum adequately for most applications. It has a structure that
drives energy dissipation to zero in flat spin when nutation angle goes to 90°. The spherical dedamper, originated bu
Kane, is a viscously coupled sphere at the body (rotor in this model) cm that will continue to remove energy in flat
spin if excited.

Adams Dedamper

Recorded here for convenient reference is a frequently useful dedamper/damper model first proposed by Jerry
Adams,

Tg=ey[Ty, T2, Tel" = &5 (Ute)[Ha/H]*[-Ha(Ha/H), — Ha(Ha/H), Hr(H/H)IT (2.49)

= &) (1/14)cos’0,[—H; cos6y, — H, cos0,, Hy sing,] " .
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p=lp/ls; @ =[(Ky+K)(L+p)l/ly; P(s) = U[lp(s+ )]
L, = (1 + p)F{P = inner loop transmission with respect 6,
Lo =—[p/(1+ p)][L1/(1+ L][L/(1 + Ly)] = System open — loop transmission with respect 6,
Tn, = 6p/Ny = [Lo/(T+ p)I/[(1+ L)1 + L)l
Tn, = 0p/Ny = = [Up][Lo/(1 + L,)]
Tp, = 6,/Dy = P[(1+L1)(1+Ly)]
Tp, =0p/Dy = [PISl{Lo(1+Ly)[s+(L+p+ pz)wo/(l +p)] + (L+ Ly)(s+ pwy)
— [La/(X + p)][s+ pwo/(L + P)IHI(L + Ly)(1 + Ly)]
Tp, = 6p/D3 = [p/(1+ p)I[P/s][0o + (La/Lo)(s+ @o)[/[(1+ L1)(1 + Lo)]
Figure 2.4 Decoupled Spin Axis Dynamics and Sampled Spinning
Sensor Control Structure with Phase Lock Loop.
This function is defined such that T4-H = 0 so atransverse torque normal to H and co-aligned with the current Hy

increases this component and a spin down component is applied to the rotor. Conservation of momentum by the
damping torque is shown by

e =2H-H=2T4-H=0. (2.50)
Soherical Dedamper

Consider a simple two body system comprising a spacecraft rotor with unconstrained mass properties and a
spherical mass located coincident with the center of mass of the first body. The spherica mass is a
damper/dedamper fixed in position with the rotor and constrained in angular rate by viscous damping. Denote the
damper angular velocity as @y, and the relative velocity asv = @y — @s. v = @y — (@, + @,). Then the rotor torque
equation may be written

HS=jr><'r'dm=Js-ins+meHS=JS-d)S+me[JS-mS] —Cv+T, (2.51)
where Cyv is viscous damper interaction torque. Similarly the damper equation is
Hd=‘]d'd)d+deHd ='Jd'd)d +(Dd><[Jd'(Dd] =—CdV . (252)

Using the diagonal and symmetry properties of the spherical inertiadyadic J4 = el Jy& = Jdeg le; where | denotes the
identity matrix, and noting that @y x @wq =0
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Hszj'rX'r'dszsts+ws><Hs=JsE{os+ws><[JsD‘.os]=Cdv+Ts (2.51)
where Cyv is viscous damper interaction torque. Similarly the damper equation is
Hag = Ja [y + @y X Hg = Jq [y + @y X [Jg (0] = = Cyv . (2.52)

Using the diagonal and symmetry properties of the spherical inertia dyadic J4 = el Jyes = Jyel le; where | denotes the
identity matrix, and noting that wy X wy =0

Hg = Jg [0y = Jg (@5 + V) = Jg (G, + G + V) = —Cqv . (2.52)

Since Jg4 is invariant under orthogonal coordinate transformations we can expand wy in any convenient basis.
Extending to three bodies and summing momentum

H=Hp +Hg +Hg = Hp + [Jg + Jg] [ + 00 % [J5 (0] (2.54)
=Hy + [Jg + Jg] (o + @} [(Js + Jg) 0] = —Jg 0 + T+ T,

=Hp + 15+ s x[Is o] = -3y + T+ T,

where | 5 isthe inertia dyadic of the combined rotor and damper. Now assigning scalar variables to the elements of v
and denoting the time derivative with respect to the rotor fixed frame e; as with the presuperscript s

S

dv .
V= el[Vll Vo, V3" & = el[Vla Va, Vgl (2.553)
—aT T . Pdv — aTriL i T
vV =glup, Uy, Ug] " i e[y, Up, Us] (2.55b)
s V1 + V3 — gV 0 Oy + WUz = WyzUp O
- _ dv _ TEb (— dv — T[:tJ O 2
VI gr T WXV T & p + tgVy ~ WyVa T~ + @ XV = 6l + Uiy ~ Wpnls (2.56)
[V3 + WyVo — WeoV [ U3 + UhUx — WUy [
while
Pdao, “day
W = & WXy = eg[‘*)pzwn ~ W @y, @]’ = & + 005 X 0 = € [Wpr, — Wy, 6] . (2:57)
The damper equation (2.52) expands respectively in arotor or platform basis as
g + Vg + (V3 — WgVp [ v O
Ja s + V) = € Jyfdo + Uz + (Vs ~ (Vs 7= el CyVa o (2582)
[ T V3 + Wy Vr — WpVq ] Vs O
(1 + Up + Wpp(@r + Ug) — Wyl O Ou, O
3 LG + G + V) = ] Jyy + Uy + hally — (0 + Ug) o= — €[ Cyrdlp 1. (2558b)
[0z + 0 + Uz + Wity = WUy [ M3 O

Note that spherical symmetry of the damping coefficient C4 isimplicit in the right side of the last form.

Hence to add the spherical damper to a single body spinner, set H,, = 0, introduce the three damper equations
of (2.58a) and add the first form of Jy (¥ from (2.56) in (2.54). For adual-spin, if one wishes to operate in platform
coordinates, use the second form of damper equations, (2.58b), augment (2.54) or (2.224) through ¢ with the second
form of Jy4 ¥ from (2.56) and repeat the third element of (2.56) as areaction torque in the fourth equation 2.22d.

An approximate time constant developed by Murphy/Jennings assuming static balance of both bodies and
w, =Uz=0is
oo VBRI ()]
‘ Cd(*)s)\s[‘]d I 33“ T] 2 T(’os)‘so-2

: (2.59)

where A, = H/l1, and A; = A, — . In practice one will probably choose J; and solve for Cy to get the desired time
constant T4 as
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[2134]
In order that G be a real number damper inertia is bounded below as
Q2 21 215
TgoAsllzs  TalAsl  TaOA|

Cq

‘]d > ‘]min =
and choosinggl= aJy,, gives

_ ~TgwhJgl35/17]2 Lo £ VaZ = 1.0

Ca
[213] 0 a 0

= - Za% +VaZ = 1%?,3[%/ (TaAs)]

and rather arbitrairly fon = 2,

Cy = - 42 £ V3l (TA] -

2.12

3 £ VI {ZRRITeALD * 5= - (205l H £ VI- {2177t J* .

(2.60)

(2.61)
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3.0 Generalizations 6r Static Imbalance

Static balance on a dual-spin spacecraft means that the body mass centers lie on the bearing axis. This case is
analytically very convenient because the position vectors of the body mass centers with respect to the vehicle cm
r's, I'p have only components along the common bearing axis and are therefore fixed in both the rotor and platform.
The equations developed to this point are restricted to this case. We shall find below that if one body only is stati-
cally imbalanced, the torque equations have exactly the same form when written in the unbalanced body, but must
employ a modified inertia formulation to account for the imbalance. This generalization is correct for the full non-
linear time-varying model when only one body has imbalance. When both bodies are statically imbalanced, the sys-
tem is hopelessly time-varying. However, even for this case a small angle linear time-invariant approximation is
obtained by applying approximate sinusoidal imbalance torques. For large angle motion simulation is the approach.

3.1 Addition of Platform Static Imbalance

In Equation 1.3 abovedr/dt=0 has been assumed, i.g,,is fixed in the rotor basie.. Removing this
assumption by allowing a platform static imbalance, the total vehicle cm will be displaced from the bearing axis and
will no longer remain fixed with respect to the rotor. Additional equations are now developed to treat this case.

Repeating the rotor momentum expansion analogous to Eq. 1.3b yields

Hs:I[rs"'us]X[f's"'ns]dm:\]s[]os"'msrsx';s (3.1)
s s
d d
= Jg [bog — Mgl g X [Ig X @] + Mgl X drtszlsﬂos+msrsx drt’s,

where Jg, |5 are the rotor inertia dyadics with respect to the rotor and vehicle cm, respectively. Inertial time
derivatives are denoted while “dv/dt denotes differentiation with respect to rotor basisComparing with Equa-

tion 1.5, it is seen that ther /dt term has appeared and, less obviby®,is no longer fixed im. Differentiating a
second time to get the rotor torque equation,

e = [Irs + i x[Fs + fidm = Js (G, + @ x [ 6] + mar o<t

:{Jsﬂbs_msrsx[rsx‘bs]} +{0.)5X[JS|]05] _msrsx[(*)sx(rsst)]}
s s 2

dr der
+{2marox[agx T} + marox —®) (32)

Sdls Sds S‘ds
= {15 [} +{oxx[Is o} +{ Eums+ms[rsx(msx(Tft - (Tft

S 2rs

ot

The brackets in (3.2) indicate sequentially equal terms. This equation is the general expression of the derivative of
rotor momentum when the vehicle cm is not fixedgjn.e., in the rotor.

Statically Balanced Rotor

Now consider the case where the rotor is statically balanced. When this constraintdislifised ine,, and
using the definition for the vehicle cm it can be written

x (s xrg)]}

+ {erSx

rs=—(mg/my)ry . (3.3)
The inertial derivatives may then be expressed
Fs=0yXrg (3.4a)
Fs= @y Xrg+ @y X[, Xrg] . (3.4b)
Substituting (3.4b) into the second expression of (3.2),
Hs = 3 [0, + 00 X [Js [o0g] = myrs X [ x @] = mgrs X [, X (s < ay)] (3.5)
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Noting thatr, is fixed ing,, the platform momentum is unchanged from the form previously obtained. Thus,
addingH, to (3. 5)

H:JSB*)S"'(‘)SX[‘JSB*)S]+|p|]:°p_msrsx[rsx(bp]+wpx[|pmp]_msrsx[wpx(rsxwp)]
= J [0, + 00 X [J Coag] + 1, oy, + 0, X [T, ] (3.6)

whereJs, J, are the rotor and platform inertia dyadics with respect to body mass centers, and the platform inertia
dyadic Wlth respect to the vehicle cip = ep[J myToTp] €, is replaced by

= ep[Jp — MyToly — Mesfale, = e7[J, — mp(1 + my/myFFole, = epfl, — maffdle, . (3.7)

Note now that (3.7) is identical in form to Eq. 2.3 from which the scalar expansion of (2.22) is eventually obtained.
This is a very pleasing result, as it means that all the previous expanded equations for derivative of total system
momentum can be generalized to the statically balanced rotor and arbitrarily unbalanced platform. This is done by
using in prior equations the rotor inertia dyadic about the rotor cemdithegeneralizednertia of (3.7) for plat-

form inertia. In particular, Eq. 2.22a-c may be so generalized. Note that the rotonatdex dynamically bal-

anced.

To obtain the fourth equation necessary to completely describe the four-degree-of-freedom vehicle, we can
equateH to the moments applied to the rotor as a free body. Assuming no external forces on the rotor or platform,
the force applied to the rotor by the platform is

Fp = —Myfp . (3.8)
Denoting the position vector to the point of force application (the despin bearing center of symmetry) with respect to
the vehicle cm by, the moment on the rotor is
Mp = —mpry X1y, . (3.9
Equating this to the second form of (3.1) yields
Js [0 + 0 X [Js [eog] — my[rg —rp] Xi, = 0. (3.10)

Now we are interested only in the 3-axis equation from (3.10). If the rotor is statically batigrcggdhas only a
3-axis component. Therefore, the last term in (3.10) can make no contribution to the 3-axis equation and indeed the
scalar expansion of (3.10) is given by (2.22d) witreplaced by J

To summarize, for a statically balanced rotor and arbitrary platform, the four vehicle torque equations are
obtained by replacing E J; — mdffs with X in (2.22) and replacing
lp =Jy — MyToT, (3.12)
with
1o = Iy = (MMQFy = Jp = M(L + My/Mg)FgFp = Jp = MyFoFy = Mefief's (3.12)
in Equations 2.22a through c.

All to the results up to and including (2.40) hold with stated assumptions and substitution of the appropriate
inertia parameters. Equations (2.46) and (2.47) are not in general valid begauBavith a statically imbalanced
platform.

It is convenient to note another interpretatioripofThe total spacecraft inertia at some relative phase may be
written

I'=Jy — Myl + Js — Mgfil (3.13)
Using the definition of vehicle cm
Mgls = =Myl (3.14)
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and substitutinggrin | yields

lh=1-3, (3.15)
hence the augmented platform inertia matrix is the total vehicle inertia about the vehicle cm minus the rotor inertia
about the rotor cmAlso the platform inertia with respect to the rotor cmyis dny(1 + mp/ms)2 Tolp # 1p.

The moments that are equated to (3.6) and (3.10) in the presence of platform static imbalance are also altered.
Letx; denote the positions of application with respect to the platform cm of f6faas the platform, and similarly
yi, F on the rotor. Also, leT, T represent pure torques applied to the platform and rotor. Then, without supply-
ing details, the torque equations corresponding to (3,6) and (3.10) respectively are

Tp 060, + 6y X [T, [y + Jg Tog + @ ¥ [Js T = Ty + T+ Z[rp, + x] xFP + Z[rg +y;] X Ff (3.16)

Js [0 + s X [Js[eog] = T + Zy; X FY + [rg — ryp] X[myi, - (mslm)ZF{’ + (My/m)ZF] . (3.17)

Again, the last term in (3.17) makes no contribution to the 3-axis scalar equation. However, (3.16) has the term
rsx2F. Since this term appears in the total momentum derivative (3.16), but not in the rotor component (3.17), it
has the form of an external platform torque (B Figure 2.3, page 2.8) even though it arises from a force on the
rotor.

It is informative to inspect the platform free body torque equation which (3.17) parallels. This equation is
Jp [60y + @ X [Jp [op] = Ty + X X FP + [r = rp] X[ = (My/M)ZFF + (Mmy/m)ZFP] . (3.18)

Here the 1 and 2-axis components of ry, do not vanish when the rotor is statically balanced and the platform is
statically imbalanced. IZFip =0, thenZF} = mi',, and the last term in (3.18) becomegmy—r ] x [f, + ;] which
is, as one should anticipate, the moment due to the platform acceleration force applied at the bearing.

Finally, the momentum change due to a force applied to the rotor of a dual-spin vehicle can be shown to be
AH =[rs+y]><J'Fsdt. (3.19)

For example, if a spin thruster is fired impulsively on a dual-spin vehicle with statically unbalanced platform initially
and finally despun, the rotor spin torque depends upon platform position at the time of firing. Sometimes an unbal-
anced platform will be positioned to get the desired combination of momentum change and radial velocity change
from a radial thrusting maneuver.

3.2 Combined Rotor and Platbrm Static Imbalance

Letr,, r, denote the position of rotor and platform mass centers with respect to the vehicle cm when the rotor
is statically balanced. This is consistent with the notation of previous derivations. If we now introduce a rotor static
imbalance by displacing the rotor cm by

re=el[Xs ¥s, O], (3.20)

the respective position vectors from the vehicle cm to body centers become
rs=(1-mgm)re+r, (3.21)
rp=—(1—-mg/m)re +r, == (mgmpy)rs . (3.22)

The geometry is illustrated on Figure 3rk.andr, are fixed ire,, and expressed as
ry= 5[ (1 - mgdm)xy, — (1 - mgm)yp, z]" (3.23)

r = ep[(1 = my/m)Xy, (1 - my/m)y,, z,]" = = (Mmg/mp)ry . (3.24)
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Bearing Axis A Platform

Mass Element

|
Oem = (MymM)re +: (my/m)3,

s

O = (Mym)r - (M/m)3,,

: _qm ’
= (1- m/m)r, +(mp/m)5 >
k————>— 2(1 - mym)r,

Figure 3.1b Bearing Axis and cm Motion Geometry.

Rotor cm (m)

o
Rotor

Mass Element

Figure 3.1a Dual-Spin Vehicle Mass Model With Platform and Rotor Static Imbalance.
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The angular momentum then may be written for the platform and rotor respectively as (these are identical to Egs.
1.3a and b)

Hy =!’(ro 1y + P X (Fo +ip + f1)dm

=my(ro + ) X (Fo +1p) +J'up><[1pdm (3.25)

=mMp(rg +1p) X(fo +p) + Jp [y

and
Hs:!’(ro +1g+ ) X (o + s + frdm.
=my(ro + 1) (Fo + 7o) + [ W xtdm (3.26)
= mS(rO + rS) X (rO + r'S) + ‘]SB’OS
where
Fs =T+ (1-mgm)e=w,xry+(1-mg/m)wgxre (3.27)
fp=F = (L—-my/m)ie=0yxr, - (1-my/m)wsxre (3.28)

Expanding the inertial time derivative of momentum yields

Hp=!’(ro+rp+up)x('r'o+'r'p+np)dm (3.29)

=mp(ro +rp) X (Fo +p) + Jp [y + @y X [J, [y
=mp[ro Xty = (L —my/m)roxie = (L= my/m)reXifg +ryXiy +1r,xi]

= mMy(L - my/M)[—(1 - my/M)re Xife +reXiy +r, %]

+!’(r2 + ) X (5 + fi)dm

He = !’(ro Frg+p) x(Fo+ i+ fi)dm (3.30)

=mg(ro +1g) X (o + ') + Js [og + 005 X [Js T
=mgroxifo + (1= mgm)roxie+ (1= mgM)reXig +ryxiy +ryXio]

+Mg(1 — my/mM)[(L —mg/M)ro Xig +rgXxiqy +1ryXig]

+ !(rl +Hg) X (1 + fig)dm
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In equation (3.30)
fs:‘:opXrl +(A)p><((x)p><l’1) +(1_ms/m)[(:°s><re+wsx(ws><re)]

=Gy XTq + 0y X (0, X 1) (3.31)

(L= i xre + P (0, <) X1 + 6 X (@ X1

= Gy + (1= mgm) T, x (0 x1)

+ (1 - mym)[(wp, X 6x) X + W X (Ws X Te)]

and similarly fori', in (3.29). The last term in each of (3.29) and (3.30) is completely expanded as Eq. 2.22 with
inertias as modified by Eqgs. 3.11 and 3.12. Note carefully {hattle discussion just alee Eq. 3.11 is the rotor
inertia about the statically balanced rotor cm (tip,0fh Figure 3.1), while Jis the platform inertia about the vehi-

cle cm point with the rotor statically balancegisdused here for body inertia about body cm.

Takingr, = 0 for the present, we need only expand the termig fo get the additional torque contributions
due to rotor static imbalance. The torque term containirig (3.29) and (3.30) are respectively dendtédndhg,
and summed to get

h® = hg + hy = (MaMy/M)re X i'e + Mrexify + 1y %7 . (3.32)
We requirer, andi;. First, transforming, to the platform basis,,

le =€ [Xes Yo, O]" = €)[Xs COSY ~ Y5 Siny, XsSinys + yscosy, 0] (3.33)

= ey VX2 + y2[cos {y + Tan(ys/xJ)}, sin{y + Tan(yy/x)}, 0]" .

d dp2xr
Denoting the time derivatives of in e, as S;e , Zt2 € we get
d .
£e = elUlYe, X, OF (3:34)
dp2 . . . .
0o = el = Bye, ~Wiye + U, O (3.35)
Using
oy, = g [0y, Wy, 3], (3.36)
. _ dp2 ; d
Fo= ztze+wpxre+2wpx ge+%x[u)pxre] (3.37)

(03 = Wy + P)Ye = (05 + w5 + U7 + 2030)X [
= ey (@ + Wy + P = (] + 65 + U7 + 20050)Ye .
0 (001 + 003 + WW)Ye — (G — 103 — 1 )Xe ]
Sincer is fixed ine,,

F1= 00 Xry + 0 X [y, Xrq] (3.38)
a ((*)2 + (,01003)25 + (1 - ms/m)((bs - le)Z)yp + (1 - ms/m)(wg + (*)%)Xp O

= e E-(Go1 ~ Wpw3)zs = (1= MyM)(&g + wr00)xy + (1 = mym)(@f + By, .
D’(l - ms/m)((bl + (*)ZU)S)yp + (1 - ms/m)(d)z - (*)1(-*)3)Xp - (m% + (-*)%)Zs O

Next (3.37) and (3.38) are linearized about the operating agirt0, andy = w (to linearize with the plat-
form spinning is considerably more complex). The accelerations reduce to

3.6



O _ye(bs - Xewg 0
fe=e Xeil ~ Vel . (3.39)
@ + Wt,)Ye = (Wp = W01)Xe []

0 Zs(bz + yp(l - ms/m)(bs 0
Fy =€ B ~240 — Xp(1 — mg/m)co B (3.40)
o(1- ms/m)[yp(bl - Xp(bz] O
Then expanding (3.32)

0 ms(mp/m)[(yg - 2erp)601 = (XeYe — YeXp = Xer)(l)z O
B + (Xeye - Xer)wswl + (yg - erp)(*)s(*)z] - ms[xezs(bs - yezs(*)g] g
a -~ - - - - ---~"-"-~"~-~"~-~"~-~-=- -~ 0
he o egg ML (MpM)I(XeYe + X + YeXp)in = (Xe + 2XeXp) | B (3.41)
0 + (Xe  XeXp)Wsy + (XeYe + YeXp)Wsty] — Me[yeZs0ds + XeZsWX]
O = @ —mmm e m e mmmm— - - - - 0
B_ms[xezs(bl + yezs(bz] - ms(mp/ m)[(XeXp + yeyp)(bs E
O - (Xg + yg ~ XeXp ~ Yeyp)(hs + (Xer - yexp)wé] O

These terms (or their unlinearized equivalent) subtract from the right side of (2.22a - c) in the presence of rotor static
imbalance given by,.. To get similar terms for (2.22d) we expand the 3-axis terhi ofith the result

hg == ms(mp/m)[xezs(.*)l + Yezs(:oz] + ms(mp/m)z[(X§ + yg:- — XeXp ~ yeyp)d)s

- (Xexp + Yer)(bs - (Xeye - yexp)wg] : (3-41)
Extracting the dominant terms, i.e., proportionakbfofrom (3.40) and (3.41)

. U YeZs U

h°=e) mswﬁg ~XeZs O (3.42)

O
D_(mp/ m)[xeyp - yexp] O
and

hg =- ms(mp/ m)z[xeyp - Yexp](‘)g
= ms(mp/m)(l - mp/m)[xeyp - yexp](*)g - ms(mp/m)[xeyp - yexp](*)g (3-43)

:D1+D3.

If one substitutesxand y, form (3.33) in the 1 and 2-axis terms of (3.42) and compares with the seventh term of
Egs. 2.22a and b, it is observed that rotor static imbalance tepags and myzg behave, to first-order, identically

as the respective dynamic imbalance terigsahd §;. Now consider the 3-axis term of (3.42). When rotor and
platform momentum derivatives are summed to get this term, internal torques cancel and external torques remain.
Therefore, this term in (3.42) can be interpreted as an equivalent spin frequency external torque on the rotor, i.e., an
input D; on Figure 2.3. Then the term of (3.43) can be interpreted as an external togppkigan internal torque
equivalent to B of Figure 2.3. Thus, the despin pointing effect of rotor static imbalance can be obtained to first-
order by multiplying these two torques by the respective closed-loop disturbance transmission functions. Note the
despin disturbance effect vanishes as expected if the platform is statically balanced.

One can further simplify the torque terms of (3.43) by letting

ry = eg[xf, ys, O] (3.44)

be the platform cm offset from the bearing axis. Then usifigm (3.33) and substituting fogxy,,
D, = my(my/m)(1 - my/m)*\/(Z +yA)(x} +y7) wi cos@ + n) (3.45)
D3 =D4/(1 - my/m) , (3.46)
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where

qu = Tan_l{(y sYi + szf)/(xsyf - ysxf)} = Tan_l{y s/Xs} + Tan_l{xf/yf} . (3-47)
3.3 Multiple Statically Balanced Rotors

A simple extension of the derivation of Section 3.1 allows us to admit multiple statically balanced rotors with
bearing axes coaligned along the 3-axis. It is not necessary that the bearing axes be colocated so long as they are
coaligned. We call the new bodies "rotors" to distinguish them from the one "platform" body that need not be stati-
cally balanced, although the labeling is somewhat arbitrary. However one or more of the new bodies can be despun
or nearly so, as for example the despun solar array of the three body HS394 spacecraft developed at Hughes in the
mid 80’s.

Noting that under addition of more statically balanced rotors (cm on the bearing axis of each respective rotor)
the total vehicle cm remains fixed in the platform as each rotor turns. Hence the torque equations for each of i rotors
become (analogous to Eqg. 3.5)

Hg = Jg [0 + g X [Jg [0g] — mgrg X [rg X @] — mgrg X[, % (rg X a,)] - (3.48)
The derivative of total momentum becomes, similar to Eq. 3.6
H:izgsubs+wsix[35&>s]g+ipu;)p+wpx[l‘punp]. (3.49)
In this casefp has a correction term for each rotor, becoming
lh=elye. =gl - S mifsfgle , (3.50)
I

WhereTp is the generalized platform inertia. A parallel to (3.15) applies Uidg
i

Now we find that Egs. 2.22a-c extend to multiple rotors by summing in the terms for each, and the total vehi-
cle torque equations are obtained by collecting these three equations along with one scalar equation of the form in
2.22d for each rotor.

Linearized time invariant equations can be obtained in the platform if every rotor can be approximated as bal-
anced and symmetric. These equations will be identical in form to (2.34) sutbstituted for | and nutation fre-
quency

A = [Z 1550 + (155 = T2l (3.51a)
A2 = [T 1550 + (55 = Tl 22 (3.51b)

)\p ZVXP\Z = H/IT - (A)p (351C)
Ao =HN7 =T 13ws/lr ;@ =0. (3.51d)

To express the equations in any rotor one must also approximate the platform as well as all other rotors as balanced
and symmetric. When expressed in rotor i, the approximate equations will have the same form as the simple spinner
or a dual-spin vehicle, but having nutation frequency

A =H/t —wg = Ay — . (3.52)
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4.0 Spacecraft Acceleration and Moments
4.1 Acceleration of a Bint on the Rotor

Letr, be the inertial position of the vehicle cm ande the position of a rotor fixed point with respect to the
the cm. Then denoting

R=ro+r,, (4.1)
the second inertial time derivative is
R=t +Sd2ra+_ X[+ 2 xE‘+ X [Ws X T ,] (4.2)
where
05 = 1[0, Wep, Wsg] | (4.3)

S
: N . dr . . o . .
is the inertial angular rate of the rotor b@lsmdd—ta denotes time differentiation in this basis. Using

ra=0+ry = 63[51, 3, 01" +elfry, 1, 1]
= €l[5, cosy + &, siny + ry, 8, cosy — & sing + 1y, r5]" (4.4)

= el[8gy + Iy, Bsp+ Mo, T3] "

and expanding
S 2 5

fa +(b5><6+2w5x% + s X [0 X 8]

fo¥ 2 dt

[dsal3 = Gsaly + WeaWealy + Ws10sals — [wEy + wédlry O
+ e;r%*)ﬁrl — (0gl3 + WeyWsaly + Wepldsalz — [05y + wEiry B (4.5)
[B01r2 = Gsaly + WeyWsaly + Wspldsals — [Why + wEilrs

where we have taken fixed ine; and the unexpanded terms, exceptifiare present only in the case of a platform
static imbalance resulting in vehicle cm offéet The effect of rotor static imbalance is fixed in the rotor and
included inr 4 if present.

It is sometimes convenient to expréssn terms of platform inertial rates in the platform basgisnstead of
rotor rates as above, i.e.,

@y = [0, Wyz, Wpal " - (4.6)
The relative rate is
@ =5[0, 0,47 =€][0, 0,4]", (4.7)
wherey (ut for constant rotor rate) is the relative phase. The rotor rate is then
Ows 0 Oy COSY + o siny [
0 = @ + 0 = €] sy o= €] Ky COSY — Wy SINY = (4.8)
W3] [ Wps + Y 0
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The inertial derivative is

S

. . d
mszwp+d7(:)r+wpxmr

D1 0 Gy + Padyp) COSY + (W — Wodyg) sing [
= ef i = €] (G2 ~ W) COSY — (6 + P sin 1, (4.9)
s3] [ pz + O 0
and substitution of (4.8) and (4.9) in (4.5) yields the acceleration of a rotor point in terms of platform angular rates
and accelerations. Equation 4.5 is valid for a point either in the rotor or platform provided the angular rate of the
appropriate body is substituted ands with respect to the correct basis. A solution frequently used is the accelera-
tion due to small angle sinusoidal motions. gt °dr/dt =0, and

05 = €1 [, COSAGL, 00, SINASL, W3] " . (4.10)
Then the first-order acceleration is
O (s + W3)f3COSAt — wir; [
R=f,= elg Wo(As + Ws)r3 SINAG — wir, E (4.11a)
[(ws — A}{r 1 COSAGL + r SiNAGY ]
For nutation frequencks = (0 — 1)ws, andws = w, yielding
E O Or3 COSAGt O g
R=i,= el mws orgsinAgt O 20y, O, (4.11b)
E {2 - o){rycosA¢t + rpsinAty 7 [0

where w, = 0w, is the nutation transverse rate magnitude. For large angle nutation of magnitude
tan®, = y/H? + H2/H5, the axial acceleration on a symmetric vehicle is found from 4.5 as

a = 0(2 - 0)wé tanB,\/r7 + r3 cost — Tar*r,/r;) — o®wérstarf @, . (4.11c)
Now we return to expand the platform static imbalance terms from Eq. 4.5, viz.,

s dr m52:653 - (*)53:652 O
200, %~ * = 20501 ~ Wi
%1052 — Ws201 [

O Ws3[04 cOsSY + &, siny] O
= ethng we3[ 3, cosy — &, siny] B (4.12)
[J-0s1[d1 cosY + & sinY] = wasy[d, cosy = &, siny]
ra . . . T
iz = e, ([, cosy — &, siny, — &, cosyY — &, siny, 0]
+ el Y?[-d, cosy — &, siny, &, siny — &, cosy, 0]", (4.13)
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(10105207 = [WE, + wEal 1
o, [ @y % 8] = € o081 — [ + B
0 Ws1Ws30s1 + WsWszds2 [

o105l 8, COSY = & siny] = [wE, + W[ 8y cosy + &, siny] O
= el i,] 8y cosp + 8, siny] - [l + wE[8 cosyp - &y siny] (4.14)
0 s10s3[01 COSY + &y SINY] + W53 O, cosY = &g siny] [
and
O —Ws3[d, cosW — &, siny] O
G xd=el E (o3[ 51 cos + 8, siny] B. (4.15)
(0918, cosy = &; siny] — @s[&; cosy + &, siny] o
The preceding four components may be collected to get the total acceleration due to platform static ifbalance

Doing so for the 3-axis (spin) only and using the syndlaglto denote the additive acceleration component induced
by platform static imbalance, we obtain

035 = — (20 — s {[ w5101 + W 0,] COSY + [Wg18, — 0] SN}

+ Wg1[Op cOSY — &, SinY] — s [ O cosY + &, siny] . (4.16)
Assuming a balanced symmetric platform, while admitting rotor asymmetry, the nutation rates
Ws = €1 [, COSAL, MWy, SiNAG, )T, (4.17)
obtain, where the factor
N = Va5 = To)l22(155 = T22)] (4.18)
arises from rotor asymmetry(see Appendix C). The axial acceleration component is
033 = — (20 — ws)W{[ 81 COSAt + Nd, SiNA] cosy + [, cosAt — Nd; SinAgt] siny} (4.19)

— WA SINAG[ &, cosW — &1 SiNP] — NwyAg COSAL[O; cosy + &, siny] .

== (20 - wy)w{[ 3;C0SAst + W) + drsin(At + W)] + (1 — Nn)[d; SiNAtsiny — 3, SinAgt cosy]}
—WAS{[ 01C0SAst + ) + 3rSin(Ast + W)] — (1 — N)[0, COSAt cosw + &, cosAgt siny]}

== (20 — wy)w{[ 3;C0SAst + W) + drsin(At + W)] + (1 — Nn)[d; SinW — &, cosW]sinAgt}
—WuAS{[ 01€0sQst + W) + OySin(Ast + W)] — (1 — N)[6; cosy + &, sinP]cosht}

== (20 + As — o) wo{[ 81COSAst + ) + Sosin(Ast + W)]}
- (1 -Nn)w{(2P — wy)[d; sinW — &, cosP]sinAgt — AJ[5; cosy + 3, sinP]cosht}

== (20 + As — o) wo{[ 81COSAst + ) + Sosin(Ast + W)]}

+(1- f])%%% = s + A){d1/2C0SQst + ) + Sp/2c0SRst + )}

= (20 — w5 = A{ B1/2c0sRst — W) — B/2C0SQst - LIJ)}B

Thus the combined effects of platform static imbalance and rotor asymmetry produces acceleration at frequencies
As £ wy, which for a despun platform reducesMp= ow (inertial nutation frequency) and 20)ws. Magnitude
and frequencies are tabulated below.
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For an asymmetric platform the transverse rates are derived in Section 5.5 and have the form
s = elo)o[vl CoS{Ast + B1} — vocos{(Ap + @t + Bo}, Vi SIN{ At + B1} + vosin{ (A, + @)t + By}, 0J/0,]" . (4.20)

Here the platform asymmetry coefficients are Vi =Alwg = Al1/Ty = (1 ++112/1,)/2,
v, = Blo, = Bl11/T1 = (1 — \/l11/152)/2, where A, B are developed in Sect 5.5. Expanding the axial acceleration
dag =— (2y — (’)s)(’)ovl{[Sl cos{Ast + B1} + 82 SiN{Ast + Pr}]cosy + [8, cos{Ast + B1} — &y sSin{Ast + Bl}lsinw}

- moxsvl{sin{kst + B1}[8, cosy — &1 siny] + cos{Agt + B1}[01 cOSY + &, simu]}

+ (2y - (os)o)ovz{[Sl cos{ (Ap + Wt + Bo} — S, sin{ (A, + 0 )t + o}] cosy

+[8; cos{ (A, + )t + B2} + d1SiN{ (A, + 0t + B2}] simu}

+ (A + ms)o)ovz{sin{(xp + 0t + B2} [0, cosy — 61 siny] — cos{ (A, + ws)t + B2} [31 cosy + &, sin\p]}

=— (2 — g + Ag)0ov1[01 COS{At + y + B} + & Sin{Agt + W + B1}] (4.21)

+ (2y — 2005 — Ap)oV2[ 81 cOS{ (A + @)t — W + B2} — 82 SIN{(Ap + )t — y + B} ]
The resultant frequencies are again tabulated below.

Table 4.1 Axia Acceleration Frequency and Magnitude Induced by Nutation.

Source Frequency Magnitude
Nutation As=Ao — g = (0 — Do BnTo(Ms — Ag)ho =0T (2 — G)oW?
Rotor Asymmetry As Bn[r2(ws—Mhe)? + rAMos—Ae)?] Y%A,
Platform Asymmetry As 0yV1ro(®s — Ag)Ao
Ap + O OnValo(Ap + 2005)Ag
Platform Static Imbalance Ao = OO 0,002
Rotor Asymmetry and As + O 0,(6/2)(1 — ) (20, — W + A,
Platform Static Imbalance s — O 0,(8/2)(1 — 1) (20, — w5 — AN,
Platform Asymmetry and As + @ 0,v10(2m, — s + Ag)A,
Platform Static Imbalance Ap + @ — @ 0,v28(200; — 2005 + Ap)ho
Support or Gimbaled Body cm
Gimbal Point™ > ~—
=7 X
? /';5 My o
Yy r,
R= Jp - mp(l - mp/m)>~< X
T - ~—~
m Q' =J,+ mXT,
Inertial Point ——_ Spacecraft cm

Figure 4.1 Appendage Mass Model.
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4.2 Appendage Support Moments (Despin Bearing Bending Moments)

Let r, be the position of the vehicle cm with respect to an inertial pagirde the position of the
platform cm with respect to the vehicle cm, arlge the position of the despin bearing center of symme-
try (platform support point) with respect to the platform cm. The two bearings apply far¢gsto the
platform at pointg\x,, Ax, respectively displaced from the symmetry point. Then

|;|p = I[ro trp+ Up] X [i;o + 'I"2 + ﬂp]dm = I |J-p Xﬂpdm + mp[ro + r2] x [Fo + i;2]

:J'pp><{1pdm+mpr2><'r'2+mp[r2><'r'0+r0x'r'2+r0x'r'o]

=Jp Lo, + 0y X [Jp [dop] + myrp xtp + mp[ro x g +rox¥, +rxi], (4.22)
and ifr, is fixed in the platform basks (rotor statically balancedb'1p simplifies to
Hp = 1 060, + 6y X[, (0] + My[ry XFo + 1o X T + 1 XFo] . (4.23)

Here we denote inertia dyadics with respect to platform and spacecraft cm respectiyelpdis. The
moments on the platform are

My =[ro+ra+X+AX XFy +[rg + 1 + X+ AX] XF,
=[ro+ry +X] x[Fy + Fp] + Axy xFqp + AX; XFy (4.24)

=[ro+ry+X]x[Fy + F5] + My,

whereM,, contains the bending moments about the 1 and 2-axes as well as the despin torque. Assuming
Fi1, F, are the only forces on the platform, such that F, = m,[f, + ], and equatingi, to M, the bend-
ing moments become the transverse components of

Mp = Jp [0, + 03y X [Jp, [doy] — mpX X [ + F5] . (4.25)

Although the description refers to support moments for the entire despun platform, the model applies
equally well to any appendage. Defining

r,=y-x, (4.26)
the moments may be rewritten
Mp = Jp [0, + @y X [Jp Chop] + Mprp Xy = mp[y x5 + xx ¥l (4.27)
and withr, fixed ine,
Mp = Ip [0y + @y X [1, Cho] — mp[y xFp + xxFg] . (4.28)
Taking
0, = ey, 6y, 033]" (4.29)
y =elys, Yo Val' (4.30)
andr, fixed ine, as
ro=eylry, 1 ral’ (4.31)

the moment components expand as
My= +[I7, - Mp(Yar2 + Yarg)]ay — [I No = MgYor1]a, — [l s — MpY3r] G

= [155 = mpysri]wyop + [15, = Mpyariwyds + [155 = 15, + Mp(ysrs = Yara)lwyws (4.324)
= [Mp(Yar2 = Y2ra)]f = [155 = Moyars]as + [15; = mpysrolas
My= —[I, - MpY1ra] Gy + 15 - Mp(Yar1 + Yars)] @, — [l B~ MpY3ra2] s

+ [155 = Mpyaralon e, + [15; = 155 + my(yary = yara)lw s = [17, — mpyars]w,ws(4.32b)
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+[I 23 - mlers]w% + [Mp(yary = Y1r3)]0)§ -l 23 - mpY3r1]w§

Mz = -l 23 — Myyalalay - ['gs — Mpy,rs]@, + I 23 = my(yaly + Yarp)las
+[I 22 - |21 + My(Yory = yary)Jow, =l 23 = MpYara] ez + |1 ?3 = Mpy1ra]w,ws (4.32C)

-l 22 - mlerz]w% +I ?2 - mperl]w% + [Mp(yars - Y2r1)]w§
Note that the expansion can be evaluated with elemengsbgfsubstitutingi,} for lﬁ andx; fory;.

For small motion of a despun platform appendage elimination of second-order terms yields
'r'2='~(l)p><l’2 and

My = |, [, — mpy X (@, XT5) = MX X = Jp [y — MpX X (@ XT5) — MX Xt
= QT B"p — mpx x Fo (433)
where
Q" =1, + My, = J) — myfofy + Mg, = 3, + MK, . (4.34)

Expansion of the elements of the mat@X is given as the rate derivative coefficients of the detailed
expansion in (4.28) above.

Letting
0 = €[00 COSARL, W, SINALL, ws]"
@y = e AW~ SINALL, cosAyt, O,
wherew, is sufficiently small that second-order terms may be neglected, the moments are:
My = wo[wa{l 55 = 15, + Mp(yars = Yar2)} = Ap{l 13 = Mg(yara + yara)}] sin Agt

+ Wol(ws = ApH{1 T, = Mpyars}] cos Agt + [155 = mpysralws (4.35a)
M2 = wolwafl 5y = 155 + My(yars = Vara)} + Ap{l 5, = My(yars + Yara)}] cos At
+ Wol(Ap = W){1 §, = Mpyara}] sin At = [155 = Mpysri]ad (4.35b)
M3 = Wo[(w3 = Ap){I 5 = Mpyars} sin Apt = (w3 + Ap){1 55 = Mpyars} cosAyt]

+[Mp(yarz = yor)]os . (4.35¢)

For the simple case where the platform is despyi,0, both platform and rotor are statically balanced,
andl?, =0,

My = = 0pAp[l 11 = MpYara] SINAt = = 0\, Qyq SINA (4.36a)
My = woAp[15, = Mpyars] COSAGt = ,A,Qp0 COSA (4.36b)
M3 = = o[l 13 SINAt + 155 COSA] = 0\ p[Q13SINAGE + Qa3COSA] (4.36¢)

Lastly, if the platform is symmetri¢}, = 15, = /17,15, = I%, the net moment is constant and equal to
M = VMET"_Mg = (DOAp[I!IJ' — MpYars] = Gn?\SU? — MpYars] = en)\SQll . (4.37)

Note when external forces are applied to the vehicle #ig term from (4.24) must also be added
to the moment. Also note that the equations derived can be applied to determine the restraint moments to
hold any appendage with mass centep aind attach point.
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4.3 Linearized Motion Induced by Combined Rotor Static and Dynamic Imbalance

The purpose of this derivation is to describe the trajectory of a point on the despun platform of a dual-spin
spacecraft in the presence of combined rotor static and dynamic imbalance. Further, we wish to determine the
torques acting along the gimbal axis of a gimbaled appendage on the despun platform. Extracting first-order
dynamic imbalance torque terms from (2.22) and static imbalance torque terms from (3.42) expressed in the despun
platform basis,

B0  Fwi[IBzcosy + Fssiny]O O VeZs 0
B = & Byo= g Feb[Racosy - Bosiny] o+ g meks  xez . (4.38)
B30 O 0 O D'(mp/m)[Xer - yexp] O
Fal[Izcosy + Egsing]0l O Zo(Ys COSY + Xg SiNY) O
= & Feb[33 cosy — By siny] 3+ eymui S ~zy(xscosy - Yssiny) .
O 0 O D’(mp/m)[(ypxs - xpys)coap - (ypys + Xst)SinLIJ] O
0 _[‘133 - Zsysmg]cosp - [Ji3 = ZgXsMg|siny 0
= e-pl)-(*)gg +[‘]§3 - zsxsms]cosp - [‘]33 - ZsYsms]Sian g
[TMs(Mp/M)rzre[Sin(@, — @)cosp — cos(, — @)sing] g
[FI$;5cosy — 155 siny0] s 0 VU577 + U5)%cos@ - ¢) B
= eg(*)sEH 13COSY — 235'n¢'D_ ep(*)sD V(57 + (23)25"1(41 0) D
Dllz COSLlJ + |33$Inl]J D S7Z|12)2 + (|33)Zs|n('.p (ps + (pp)[l
where
@y =Tarm[I34/133]; @ =Tar [yg/xd; @ = Tan [yy/Xp] - (4.39)

It is evident from abvethat transverse torques on the platform can be nulled by cancellation of static and dynamic
imbalances of the rotor by setting

ZSXSmS = ‘]?.3 ’ ZSySmS = ‘]53 (440)
or alternatively stated, by nulling the rotor products of inertia seen from the spacecraft cm.

The approach here is to replace the imbalance with forces and torques on a balanced spacecraft which induce
the same platform motion. We assert that the platform small displacement motion is the superposition of coning
motion induced by the transverse imbalance torques and cylindrical translation induced by static imbalance. The
torques are given by 4.38. Taking F w, =0 and

Ay =14lpol 51 = 1) (4.41)
and expanding from (2.40, 44, and 45), the platform angular rates are
— |22|23 3] : [ llll 33] :
Wpa(t) = o A (1= (i35 cosy — I53siny] + Di[ﬂ' 13CosY — 135siny] (4.42a)
08,1 -0?) [ (1 -0
O
+ 0 0112311 7 Eﬁ' 120y + I35 siny]

el -0
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po_ 2
wpo(t) = %W[ﬂl $asiny + 135 cosy] + Eﬂiaﬂ[ﬁl Sasiny + 135 cosy] (4.42b)
g=e p

D[02|13 22]

-0

Eﬂ' 12COSY + I35siny]

Opalqa(1 +0p) U O 1al0(1 + 0p) U

wp3(t) = Di[ﬂ' 1aSiNY + I35 cosy] + s [l 33 cosy — 135 siny] (4.42c)
Saa-o) o Saa-o) o
_ O44155(1 - 0?0 .
005[17[]]'330054" 13, siny]
Saa-o) o
p _2 p
() = i 2587 ol 15, cosw 15, siny] (4.432)
O P O
p _2
) = il 58 I(lf] —+0[§;2I22| s s, sing + 13, cosu (4.43b)
O P O
(1 .
palt) = w@% {50059 - Tz sing) (4.43¢)
() = E{“ e (Zf] Ll g 05ssing + 3scosy] (4.442)
ZD ; S 2 H
=-of 11(1 )Em 25 Siny + 13;.co8Y] = ~ @{B,, Sing + 8,1 cosu]

. _ [1 11155 = V3] + [021 201540} O
(*)DZ(t) - wgé{ = Ap(l - 0—2)

[ﬂl S3cosy — I135siny] (4.44Db)

a1 . .
= WP |j]| $,cosy — I5gsiny] = w2[6,,, cosy — By, siny] .
Al-0)p !

oHa1l0(1 010, . -

palt) = w@%ml Sasiny + 13, cosy] = GZii (i3, sinw + T3, cosy] (4.440)
p 0 33[]
The response of a platform mounted axial accelerometer is simply

ag(t) = Gy (t)rp — Wpp(t)ry = - WE{r 2[Bz SINY + 8,1 COSY] + r1[B, COSY — 6,1 SINY]} (4.45)

and clearly measurement of magnitude and phase of this acceleration yields the composite imbalance quantities
133, 135 and no information to separate static and dynamic imbalance.

On Figure 3.1b is a representation of the cylindrical coning motion where it is illustrated that in the absence of
torques the platform cm, and every point on the platform, traces a circle of ragugr{m (1 — my/m)r, while the
rotor traces a circle of radius {Img/m)r.. Hence, a spacecraft with statically balanced rotor requires a rotor fixed
radial force applied at the vehicle cm of magnitudedn to induce this cylindrical coning motion. Deducing from
the sketch of Figure 3.1b, the platform cm position trajectory is

~ & (Mg/m)[Xs COSY ~ ys Sin, ys cosy + xssiny, 0] (4.46)

= - ej(m/m)refcosp + @), sin@ + @), O] ; @ =Tan Tyy/xd .
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from which we deduce the equivalent force required on a spacecraft with statically balanced rotor as
f=mi = egmywire[cos@) + @), sin@ + @), 0] . (4.47)

Note that this force depends only on the static imbalance components and does not influence the axial acceler-
ation measurement described above. Again consider the torques about the gimbal axis of an appendage. The plat-
form transverse angular rates and derivatives thereof may be applied in Eq. 4.32 to evaluate appendage support
torques induced by our pseudo torque. Next the expressigm)x f (see 4.25) yields the reaction torques due to
the pseudo forcé The the vector component sum of these torques along the gimbal axis yields the gimbal reaction
torque that must be supplied to hold the appendage fixed. In symbolic form this is repeated from (4.28) as

Myp = 1000, + 0, % [1 L8] — myy iy — (My/m)x xf | (4.48)

where we use the sub a to denote the appendage under study. All tddmprofected on the gimbal axis can not

be computed from the composite imbalance terms measured with the accelerometer. Hence, measurement of the
appendage gimbal reaction or more practically the gimbal relative angle excursions yields g fatad which

the x xf term can be separated and used to isolate the static imbalance components introduced separately by the
pseudo force.

Now note that small values of dynamic and/or static imbalance will result in small linear range motion. A
good approximation of the small angle behavior of the appendage can be obtained by assuming it is fixed to the plat-
form, calculating the internal dynamic disturbance torque, and then applying the torque transmission of any appro-
priate gimbal control loop. When we linearize (4.47) and assoyymwew,, the result is

My = 1, [0 = mMay X5 = (My/m)x x f = J, [y, = Max x5 = (M/m)x xf = €)[My, My, Mg]" (4.49)

O [151 = malyarz + yara)lon — [132 — Mayari]ay — [133 — Maysri]o + (My/m)xsf, 0
eg {152 = mayaro]ay + [15, = ma(yary + Yara)] @y, — [153 = Mayaro]as — (My/m)xsfy B
D’[|13 May1ra] @y = [193 = Mayors] @y, + [153 — Ma(yary + Yora)] @ — (My/m)[x4f; = Xof1]

O[3y = ma(Xara + Xar3)]@y — [I5 — MaxXary]ay, — [J53 — MaXary] @ + (My/m)xsf, O
el 3%, — MaXaral6oy + [33, = Ma(Xay + Xara)]6o — [J35 — MaXar] 63 — (My/m)xafy,  J.
D‘[Jls MaX1r3]ay = [I53 = MaXors] @y + [J33 — Ma(Xqry + Xora)] G — (My/m)[X4f, = Xof1] 0

Expanding in terms of the imbalance induced angular rate and force solutions

My = - u)iE}Jal My(Xoly + Xal'g) U [ﬂl s siny + IS, cosy] - M[ﬂl Sscosy — 135siny] (4.50a)
0 |11(1 0) |22(1 ) O
ZM di3ssing + I3, cosy] + (Ma/m)xsf,
O 0
= - (’ng( )2[allcOS(.|J (P) + alZSIn(LlJ (p)]

— a§mp(Mym)riredyssin@ — @ + @) + E(Mema/m)xaresin@ + @)
= - {157+ 1392V, + a,cos(h - 0 - @)
- wé(msrezs)(mp/m)(rf/zs)a135in(l-IJ @t (pp) + wg(msrezs)(ma/m)(xi%/zs)Sin(LIJ + (ps)
= - GV(IRP F (B)?Vel, + &,cosh — @y — @) + WE(MZIVa, + a,SinW + @ + @)
- (’~)§(msrezs)(mp/m)(rf/Zs)aI:%Sin(llJ @t (pp) + (*)g(msrezs)(ma/m)(XS/Zs)Sin(LIJ + (ps)
== (’35{‘]?.36‘11 - fiaalz - msxszs[all + (ma/m)(XB/Zs)] T MsYsZshp + (msrezs)(mp/m)(rflzs)aﬂcos@p - (ps)} sin Y

- 0.)5{3?_3&12 + Jgsall — MeXsZstyp — msyszs[all + (ma/m)(xslzs)] - (msrezs)(mp/m)(rflzs)a135in((pp - (ps)} cosy
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ma(Xlrl + Xar3) U

DY |11(1ma 1)2 Eﬂ'sssmw +I3acosy] +wf D 2o(1-0) Emsscosw 135 siny] (4.50b)
- oﬁ%[ﬂm 33Siny + I3, cosy] — (My/m)xsf,
= (,0527(_ 133)%[az1c08() — @) + axsin( — @)]

— wEMy(MyM)riredossin® = @ + @) + Wa(MsMy/m)xarecos(h + @)
= WEV(I)? + (Bo)?Veh, + 8,cos( — ¢ - @) + wh(Mszsre)[BoiSinW + @) + ay,cos () + Q)]

= wmp(my/m)riredpsSin — @ + @) + wE(Msmy/m)xgrecosy + @)

Mj = %M[ﬂl S3siny + 155 cosy] — ZS.M ml§scosy — 155 siny] (4.50c)
0lud-0) 4 0l2(l-0) 5
- wﬁ%’g P s + s cosy] - (mmbets 6
= V157 + (15)[asicos(y — @) - agsin - @)]

= a§mp(My/M)rireBesSin - ¢ + @) + wE(mgmy/m)rey/xZ +x5cos( + @ — Ag)
= WAV + (Bo)VaE, + 88,cos(p — ¢ - @3) — wimzele\/a8; + aB,sinl + @ + @s)

- wgmp(ms/m)rfreaS?,Sin(qJ -t (pp) + u)ﬁ(msma/m)reT/;f-l-_chos(.p Q- )\3)
where we have defined the geometric parameter phase angles as
A= —Tani[x,/x,] ; @ = TanY{ala]; @ = Tan Yaglap] ; @ = - Tan [ag,/as] . (4.50d)

We have gone somewhat to extremes in manipulating thie Mfferent forms in order to show explicitly terms in

total spacecraft dynamic imbalangedue to rotor static and dynamic contributions, rotor dynamic imbalgnce J

and static imbalance termsand § respectively for rotor and platform static imbalance. We have already observed

in (4.45) that only the composite dynamic imbalance with respect to the vehiclgisnaentifyible in the platform

axial acceleration. In the second form of e may observe the potential separation of static and dynamic terms.
Note the importance of the vehicle cm to rotor cm axial offset parametérszz, increases the vehicle dynamic
imbalance contributed by rotor static imbalancg.m increases, while the translation term due,tarfd the, per-

haps already second-order, platform static imbalance teyr;memain fixed. Similar remarks apply to the com-
panion torques M Mj. Hence, for sufficiently large;zhe latter terms become negligible in the gimbal torque and

the rotor static and dynamic imbalance are inseparable by measuring axial acceleration and gimbal torque or point-
ing. Next consider the case of no rotor dynamic imbalance. Then the ratio of torque due to offset terms to torque
induced by dynamic imbalance at the vehicle cm is

wE(my/m)rey/(Mpriaia)” + (Maxa)? _ (Umy(Mpriaie)” + (MaXa)?
wg(mszsre)\/_ll + 12 Zs?/_aﬁ_"'_a%Z
The denominator term is indistinguishable from dynamic imbalance and in practical cases will tend to dominate.

We next wish to investigate the behavior of pointing error induced in a gimbaled payload by the imbalance
components. The roll Mcomponent of error should be representative. Consider a simplified case where we con-
sider only the the imbalance in a single plane, the 1-3 plane. Then the last fornma@\b0a) reduces to
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M, = — wd{J55811 — MeXsZay; + (My/M)(Xa/zs) — (My/m)(Xo/Zs)ay 3]} sin Y (4.51)
- Wi{I35802 — Mexszdays + (My/M)(yp/z)anal} cos Y
=~ w8{J39aus ~ Fafaus + (M/M)(xe/2Zs) — (M/M)(xp/z5)ays]} sin
~ WE{95581 — Jiafaur + (My/m)(Yp/zo)anal} cos

= - {33001 — Figfans + byl} sin - wi{I5sar, ~ Jalaw, + byl} cos
If the magnitude of the sinusoidal gimbal torque||M held constant the pointing disturbance will be constant.
Forming this with spin speed normalized to unity
M3 = {355801 — Fa(@us + b1)}* + {35512 ~ Jialans + b)) (4.52)
Substitute x= J;; and y= X, such that
[(@11 + b1)? + (812 + 1,)°IX* = 2[ays(any + by) + &up(any + by)Ixy + [a3; + a,ly? = M7 . (4.53)

This is the equation of a skewed ellipse centered at the origin of the x,y plane. Specifying a valyeidaqiiv-

alent to specifying a bound for sinusoidal pointing error induced by the 1-3 components of static and dynamic bal-
ance. The pointing error bound will be satisfied when the balance parameters are within the ellipse. Recall that the
pointing error is a spin frequency sinusoid. Then balance errors in the orthogonal 2-3 plane produce pointing errors
that are 90in time phase from the 1-3 plane contribution.

Consider an ellipse with major and minor axes aligned with a u,v coordinate basis described as
(U - U0)2 + (V - Vo)z _

o 2 1.

Rotating to a skewed basis

i Bkcosp - y singd
WO [y cosp+xsing

(X cosp—ysin@—uy)?  (ycosp+Xxsing—vy)? _
& * b2 -

and manipulating, we get the new form

1 ’

x? cog @ — 2xysinpcosp + y? sir’ @ — 2uy(x COsQ — y sing) + U2
a2

.\ y? cog @ + 2xysinpcos + X sirf @ — 2v,(y cos@ + x sing) + v2
bZ

= [(cosp/ay + (singlb)?]x? + [(sing@/a)’ + (cosp'b)?]y? + 2sinpcos|(1/b?) — (1/&)]xy

= 2[(vo/b?)sing + (u,/a?)cosplx — 2[(Vo/b?)cosp — (u/a?)singly + (Uy/a) + (Vo/b)?

=ep +ey’ texy tex ey teg=1,
where é - 4e6, < 0is required for an ellipse. Then equating coefficients

e, = [(cospay + (singb)?] = [(ay; + by)? + [(ag2 + by)?)/M? (4.54a)
e, = [(singay’ + (cospby’] = [af; + & IMT (4.54b)
e; = 2sinpcos@(1/b?) — (1/&)] = — 2[ay1(ayy + by) + ayp(ay, + by)IM2 (4.54c¢)
e, = — 2[(vo/b?)sing + (u,/a?)cosp] = 0 (4.54d)
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e = — 2[(vo/b?)cosp — (Uy/a®)sing] = 0 (4.54¢)

& = (U/a)” + (Vo/b)> = 0. (4.54f)

Simultaneous solution of these nonlinear equations will yield the pointing error €ellipse parameters. Excluding
numerical solutions, thisis aformidable set of equations to solve, but after a thwarted week of no-wind windsurfing
on the North Shore of Maui we have happened upon the following solution. Note that the first three equations inde-
pendently yield a, b, and ¢. Also for out particular case, the last three require u, = v, = 0. Solving the first two for
1/a? and 1/b? respectively

1 & tanzq)_F oo | 2. € —etan’
# ey B |cge-sol o NS @y (4.559)
1 & tanzq)_F oo | 2 & —etan’
B oe @ |coge_sie| T ey (4.550)
_sin2o _ _ € (€ + (e — &)™
20 cosgy WM&l _|:[E%+(ez—el)2]1/2[ @e | (559
Application of appropriate trigonometric identities gives
(€ + (e — )] - (&2 - &) 2(e; - &)
tan® ¢ = ; 1-tan’ ¢ = 456
S T & ey R e N LR (450
which may be used to complete the closed-form solution for ellipse axesaand b. Summarizing,
& =2 (e; + &) - [& + (& — &)*]"} (4.579)
b? = 2/{ (e, + &) + [ + (&2 — &)1} (4.57b)
0= (U2)Tan {eslle; — &]} ; & —4ee, <0 (4.57¢)
U = + &[es sind — e, cos0]/2 (4.57d)
Vo =—b?[e5cos0 + €,Sin0]/2; e =[e + ed]/4. (4.57e)

Since the appendage pointing variation is fixed at spin frequency, the appendage pointing control loop trans-
mission can be used to scale the required pointing bound to an admissible torque [M4|. This combined with vehicle
and appendage mass properties provides the ellipse on the plane of static versus dynamic imbalance in the rotor 1-3
plane. Imbalance in the 2-3 rotor coordinate plane will produce a disturbance torque that is similarly a spin fre-
guency sinusoid that will be time phased 90° from the 1-3 plane effect. Being sinusoids, the two pointing error com-
ponents will combine in root sum sguare fashion.

I

I
]

XO

Figure 4.2 Definition of Ellipse Geometry.
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In the analysis we have derived the roll torque M, that would be applied to aroll gimbal or payload elevation
control. For amore general caseit is a straightforward application of the above to get all three components of torque
and the projection of this vector on the pointing gimbal axis. We alert the reader aso that the derivation of torques
assumes the gimbal angle is fixed which will result in an approximate solution, but does not detract from the insight

provided by the solution.

On Hughes dual-spin spacecraft the rotor mounted telescoping solar drum is frequently used for rotor balanc-
ing. Thisis depicted on Figure 4.3. The telescoping drum is attached to the rotor by three rack and pinion deploy-
ment mechanisms at 120° intervals on the periphery of the rotor. The rotor balance is adjusted by differentially
extending one or two deployment mechanisms to tilt the drum as shown. On the figure we have defined geometric
parameters and listed the sensitivity of static balance Ar, and dynamic balance J,3 and 1,3 with respect to rotor and

vehicle cm respectively.

Principal Axis : Spacecraft cm

bl

Ar, = e/T|Ar,|[0, sinp, -cosP]T = e,T2|r,|sina/2[0, sinp, -cosp]T
= ¢,12sina/2[0, d,. -d,/3]T ~ ¢,To[0, d,, -d,/3]T
Ar = (mg/my)Ar,; Ar = (m/m)Ar, = (my/m)Ar,
I3 = @+ Az - Az )(Ayy - Ay)my+ Al = z(Ay - Aygmy + Al
= az (1 - my/m)d,my + o[J35 - Jp,]

Pivot Axis
r | (Rotor Fixed) Ly =(zy+ Azg - Az )(Ayg - Ay )mg +Jy3 = 2 (Ayg - Ay )mg + Ty,
h =z (1 - m/m)Aymy +J,; = oz (1 - m/m)d,my +J,5
2 ‘ l/l I| | = az,(1 - my/m)d,my + z(1 - my/m)d,my + (J35 - J5,)]
\ g = |z,(1 - my/m)d,m  + z(1 - my/m)d,my + (J35 - J5,)]5/d;
z 1 @
y '
‘ "" - Solar Drum
\ | \
v \ | - N -—
“_ ———
—R = 2d1/3~>| J
dl

Figure 4.3 Balance Concept Geometry and Sensitivity for Tilting Solar Drum on Dual-Spin Spacecraft.
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5.0 Selected Solutions of the Dual-Spin Spacecraft Equations
5.1 Steady State Response to Rotor Dynamic Imbalance
5.1.1 Dual-Spin

Let the platform and rotor rates spin dg; = wy,, ws With corresponding rotor to platform relative rate spin
W = W — Wwy. Then assuming a symmetric rotdMs =13, - 13; = 0, and [2 = 0, the linearized transverse axis
torque equations (Egs. 2.22a and b) in a platform fixed basis become: (platform also balanced)

12601 + 113A 10 = = [133 €080t + 133 Sinet] 02 (5.1a)
|22(-A)p2 - |22)\2(A)p1 = [I ?.3 COS(A)rt - 333|n(ﬂrt]w§ . (Slb)
Solving for the steady state platform angular rates
Ebpl B: w5 220 + I13A][1 3 cOSWt - 35 sincy U (5.2)
2 lualaa(Wf = AZ) 120 + 1222201 33 cost + 133 sinwt] o
-y Uiy +139)[1 33 cosumt — 135 sinwg] B 0
1557 = l11l 22 (e + 133)[1 33 COSWL + 133 Sinwt] D, “ .
Transforming to the rotor basis via Eq. 1.10 wjitl wyt, and defining
Alp:|22_|21:|22_|111 (5.3)
yields the rotor rates as
Do 0. w2 D5fllzp + 110)00 + 113As + I2Ag] + Alpox[l 35005201t = Igsin2o ] L] 5.4)

g 0= - g
cs2y laaloa(0F = AP) E%[(' 22+ 110)0r + 11121 + 1A0] = Alpe[I 350820t + 1358in2rt]

— U Ofall g + 122 + 2135] + AlylT5 €08 20t - All5gsin 2ot U,
~ 20032~ 1ualza] Oallan * oo + 2153] ~ AlyI35c08 2t - AlylSsin 2t o P
The first term is the familiar constant rotor rate due to dynamic imbalance. The second term is a twice spin fre-
guency disturbance induced by platform asymmetry.
The 3-axis acceleration at a point

—)0.

r=eg[r, ra, ra’ (5.5)
on the rotor is given by the 3-axis scalar equation of (4.5) as
ag = 001 = MGy + (11 Wy + M2Wsp) s — Fa(why + 00Ey) - (5.6)

Substituting the advetransverse rates in gives

— (ralfs + ral3a)[(11g + Iop)y + I34Ag + |22>\2]00§

(5.7)
21111 55(w? — A3)
KT WAAY .
- m [(r2l35 — r1l33) €OS 2t + (12135 + 11135) Sin 2wit]
P
—(ry133 + ral3a)(lyg + o2 + 213)005 | 34l poﬁv}{l r%vlfaqz‘_"Tgaz .
- 2MS.2 — |44 + oMNS.2 = |41 COS(Z*)st‘Y)vaﬁo.
(1357 = l11l22] (1357 = l11l22]
with
y=Tan[(ral35 + r113)/(r2135 = r1139)] - (5.8)
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The magnitude of the constant component of transverse rate is
_ WBI2[(122 + 110y + luaAs + 1A VISs™ + 157 @yllag + lop + 21301557 + 1557
l11120(w? = AJ) 2[185° = 11al2]

whereb,, is the wobble angle or the displacement of the principal axis of inertia from the bearing axis. Approximat-
ing 111 = I, = |1, gives the rotor imbalance wobble angle as

STTT2 STIT2
0 :7|13 + T3 VIS + 15
N =

ew(*)s (5.9)

5.10
It =135 I+(1-0) (510)
Then the acceleration may be written
O3r,05Al, O
8 = 8y + (3, o—— o [0, COS(2at - y) - (5.11)
(I3 +17) O

Hence, the twice spin rate component is proportional to imbalance magnitude. The two components of imbalance
can be determined by correlating the phase of this signal with some spin phase reference, e.g., a sun sensor. Note
the dc component of acceleration

rlSs + rolSs)w?
- (ralis 2523)‘*’5 (5.12)
I+ — 13,
senses only the component of imbalance in the plane containing the spin axis and the radial line to the accelerome-
ter. The dc acceleration will also contain a first-order corrupting term due to instrument misalignment. Hence, mea-

surement of @is usually not a feasible way to detect imbalance.

5.1.2 All Spun
For a single spinning body with,l= 0, the linearized torque equations are:
111601 + (g3 = 122)WsWsp = 123008 (5.13a)
1226052 = (133 = 111) 0501 = = 1130 . (5.13b)

These result in steady state transverse rates

Eb)slg_ |:Il?/(lll_|33)|:|

0 0= ws O (5.14)
Ws2 %23/022"33)5
and linearized acceleration
ag = [r1l1g/(111 = 133) + raloa/(l5p = 139)] 0 (5.15)
and for by = lp, =VI31lp = It
ag = [r1l1g + Nl 3] WB/(I1 = 133)] - (5.16)
Computing the steady state angular momentum
H = 1[0g1, Gz, 0] = [Hy, Hp, Hg] T (5.17)
the wobble or spin axis tilt is found as
8y = Tam ' [VHE + H3/Ha] = Tan [/H + H3/l5500]
=Tanm V(I 15/(111 — 139} + {1 23/(i22 ~ 139)} - (5.18)
Approximating transverse inertia symmetry and small tilt angle, respectively
B = Tam [V + 15717 = 139)] = VIig” + 15717 = 133)] - (5.19)
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5.1.3 Wobble on a Multiple RotoreViicle

Here we develop a simple approximation for wobble of a multiple rotor vehicle where a dynamic imbalance
product of inertia exists on one rotor. The development draws on the multiple rotor equations of Section 3.3 and is
somewhat intuitive; therefore, awaits a rigorous development or verification by simulation. Using Eg. 3.49 and the
expansion of Eq. 2.22c we get angular rate terms only for the 1-axis torque equation as

= 210y + |0 = 1308 = 0.

This equation is expressed in the unbalanced rotor having prggactd spin rates. All remaining bodies
are assumed balanced and symmetric, and in steady spin we assume angular accelerations vanish in the unbalance
rotor. The constant transverse rate in this body due to dynamic unbalance is then

Wslo3 _ Wsl 3 _ W3 _ Wsl 3
—2Zw/w, It -2Zhw/es 1 - Hiws  11(1 = Ala)

where transverse inertia symmetry is approximated whenimtroduced. As is now well-known for dual-spin vehi-

cles, it is clearly desirable to avoid a body spin rate approaching inertial nutation frequency. Further note that having
the transverse rate in the spinning unbalanced body, constant in that body, the transverse rate in any other rotor or
platform will be sinusoidal with the same magnitude and at relative rate. Acceleration at a point is straightforward
using the resultant transverse rate.

W =, =0y 0,
22

5.2 Closed-Loop Response to Rotor Dynamic Imbalance

Open-loop response to rotor dynamic imbalance (wobble) was calculated for the steady-state in the above. In
this section a technique for approximating the closed-loop response to imbalance is developed for the steady state
case.

The dominant rotor imbalance torque terms from Eq. 2.22a and b are:

DTl(t)D = zgcoswst—I?,smwstD

5.20
epDTz(t) 0 D 33C0swst — 135 sinwgt 0 ( )
— t—-q O
_ J TRz 2R cos ey
epwsv 13 23 D Sln {(A)St (p} E
where
@=Tan{I54/155} . (5.21)
The phase is inconsequential to calculation of the steady state response, thus transforming:
epDT1§S;D en 1557 + 1352 { — shws, — 1} { /(S + wd)} . (5.22)

To calculate vehicle response, these torques are approximated as external forcing torques. It is convenient to express
the two constrained components of torque as a single input in terms of the average rigid body open-loop wobble
angle.

= VIS + 357 H VT2 = 150} = V1557 + 137K (1 - 0)} . (5.23)
The resultant single input representation is shown as Figure 5.1. The plant matrix is given by Equation 2.40, where
w=P(s)T. (5.24)
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Figure 5.1 Rotor Imbalance Equivalent Torque Input Structure.

Letting M and F be respectively the measurement and feedback matrices, the system open-loop transmission is:

L = PG/s+ PFM/s. (5.25)
Substituting
T=—FMO +FO, + Te=—G0 + FO, + T, (5.26)
in o, using 6 = w/s, and solving
o={l+ L} P[FO, + T (5.27)

in the system as diagrammed in Figure 5.2. Although perhaps tedious, the calculation of any variable response to
imbalance torques is now straightforward. One approach used by this writer to avoid the extensive algebrain calcu-
lating ® above isto evaluate P, F, and G numerically and perform the manipulations and inversions numerically on a
compuiter.

Te

vl

D>

M

Figure 5.2 Closed-Loop Representation of Dual-Spin Vehicle with Control.
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5.3 Equivalence of Bearing Misalignment and Rotor Imbalance

Position offset and/or angular misalignment of the despin bearing of a dual-spin vehicle is entirely indistin-
guishable from, or equivalent to imbalance. The geometry of bearing axis errorsis depicted on Figure 5.3. Herewe
note that an offset 6 results in static imbalance dmg and angular misalignment of the bearing axis produces bath
static and dynamic imbalance components.

3 %

\

I
& @3‘ i\\\ T

ms \ \\ 2> \(

—
R

Figure 5.3 Imbalance Components Induced by Bearing Misalignment.

Employing the geometry of the figure, the static and dynamic imbalance components are respectively (arbitrarily
assuming components are in the 2-3 plane)

S=(5 - do)m,

B =18 - 3010

Combining these components and translating to the vehicle cm, the equivalent dynamic imbalance about the vehicle
cm becomes

733 = Srsms + [‘ES - fiz - drsmg]6 .

5.5



5.4 Coning Response to Constant Rate Rotation of an Imbalanced Ptatih

Assume a dynamically and statically balanced and symmetric rotor, a coordinate basis chgsei® sand
constant platform rotation ratg,(w; =0). Egs. 2.34a and b may be solved for steady state platform raggs in
yielding

w, = eg[wl, oy, W3] = eg(*)p[_(*)pllsl)\zbzy — WyloafAglyg, 177 (5.28)
wherel, A, are nutation frequency components given by (2.35a and b). The resultant vehicle angular momentum is
0 —Wplq3[wpl11/Al 50 + 1] 0
H=eHy Hy HolT=€l0  —oplagleplaofslay + 1] . (5.29)

1550y + 13300 + 0h[1 53/Azl 20 + 135/A1144] O
and the cone angle is obtained as
8, = Tan ' [/HZ + H2 /H,] . (5.30)
Approximating the platform transverse inertias equal @s |, = It =111l ; A1 =A, =A, and the
momentum simplifies to

O —Wypl13[Wp/A + 1] O
H=¢ g —wplpg[ep/A + 1] g (5.31)
5500 + 13305 + (WH/AID)[135 + 1331 O
while the cone angle becomes closely

6 = Tarm [(wp/A + L)g/125 + 1351 /[1 5500, + 133004] (5.32)

= Ta™{{ V1%, + 135 ]/A I} = Tan [V} + w3 /]
If the coning momentum is small, momentum is approximately conserved on the spin axis during spinup, i.e.,
33050 = 13300 + 15500, This results i\ = (135/17) 0o — W, = 0wy, = Wy, and a reduction of the cone angle to

6. = Tan [ V%5 + 135 /17][wy/(0wso = wp)]} - (5.33)

Transforming the platform rate to the rotor basignd computing the 3-axis coning acceleration at a rotor fixed
pointr = el[ry, Iy, r3]" assumingy,, w, constant gives (from Eq. 4.5)

a8y = — r3() — we)[wy cosP + wy, SinY] — r6 — Fw? (5.34a)
= Wy (r 0y + Ip00) SINP W — Wy(F10, — F0) COS W — (F0F — 1,005 — 2100, W) Sin cosy

2 = r3(W — wy)[w, cosy — wy siny] + ry6y — rpuk (5.34b)
= ap(r 0y + Ip0y) SINP P + Wy (6 — F0) COS U — (M w? — 11633 + 21,0, W) Siny cosy

ag = (P + Wo[(r1uy = ry00) SINY + (rp00 + r10y) COSW] = r3(wf + ). (5.34c)

The constant and twice relative frequency terms are second-orademwimich is proportional to despun product of
inertia over total transverse inertia. Hence, in most applications these can be neglected, and substituting for the
angular rates, the accelerations reduce to

& = rswﬁ(lb — Wo)[(113/Azl5) coSY + (Ip3/Aq117) SINW] = 1o = 1108 (5.35a)
&= rswﬁ(tb — wQ)[(1 1921 22) SINW = (I53/A1117) COSY] + 1160 = rp6¢ (5.35b)

ag = Wa(W + WK 2113l 2p = Ml og/Aql14] SINY = [r1l1a/Aol 2 + Mol pa/Aq 1] cos}.  (5.35c¢)

Sincey = w; — w, the first two terms are approximately proportionahﬁawhile the last term is proportional to
wS(Zu)S — wy). During platform superspin maneuvers it is sometimes convenient da seb,/2 to allow the rotor
mounted accelerometer to display nutation without corruption by platform coning. By a proper choice of vector
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basis the magnitude of relative rate sinusoidal axial accelera{ipmeziuces to
& = (2005 = Wp)wWprob - (5.36)

The almve results are correct for a statically unbalanced platform provided the appropriate generalized inertia
from Eq. 3.13 is employed, however; the acceleration expansion does not include the effect of the resultant vehicle
cm offset due to platform static imbalance. Four additional acceleration terms arise due to this effect and these are
identified in Eq. 4.5 and expanded in Egs. 4.12 through 4.15. The additional spin axis(3-axis) term for imbalanced
platform coning has been expanded and found to reduce quite sinogiutd, + w,d,], wherew,, w, are the plat-
form coning rates andy &, are thevehicleradial cm offset dimensions.

5.7



5.5 Free (Nutation) Response to a Transverse Tque Impulse with Asymmetric Unbalanced Platbrm

Consider the torque impulse response for a dual-spin vehicle with balanced and symmetric rotor, despun plat-
form (w, = 0), and platform basig, chosen such thatjd=0. Then the dynamics as given by Eq. 2.40 apply and
from (2.35), (2.47d and e) platform nutation frequency is

A3 =ML = 1) = (15009)°K] 11l 22(1 = 1)} (5.36)

We apply a torque impulse; Tt-Ib-sec about the 1-axis (or equivalently the initial conditign=T;;,;(0)) and
compute the response. From (2.40)

P11 = 122155 = 13318°/0 (5.37a)
Py = [l1al23][s + |22|§37\2/|1:-3|2:-;]5/A (5.37b)
Py = [113l22][s + 123Ao/113]S/A (3.37¢)
with A given by (2.47d). Applying the impulse and inverting the transform, the platform raggarie
wy = Taf{l 22155 — 133/ A cosAt = acodt (5.38a)

={(b +a)/2- (b - a)/2} cosAt

w0y = T1[{l 22155A /A H ATSiNAGt + T1[{l 13l 23} AT COSAt = b SiNApt + o COSAt (5.38hb)
={(b +a)/2+ (b — a)/2} sinA,t + 0 COSAt

w3 = Ty[{l 20113}/ AT cosApt + To[{l 25l 20Ao/ApH A SINAR (5.38¢c)

= ccos\pt + dsinAyt
where a, b, ¢, d, amtlare now defined and
O = 1qqlp0l55(1 - 1) . (5.39)
For completeness and easy reference we also inve®f, Ps, to get the response to a torque inpuls@g
wy = T[{l 13123 AT cOSApt = To[{l 1315 1/A M AT SINA

w, = To[{l 11'23 - 12}/ COSApt

w3 = To[{l 11123}/ AT cosApt = TH[{l 13l11A1/AH AT siNAL .
Integrating the rates for, T
Ap61 = asinApt (5.40a)

ApB2 = b(1— cosApt) + asinAgt. (5.40b)

We consider the balanced case briefly. The motion of the platform spin axis is as shown by Figure 5.4a below.
For this case r = 0, and the motion describes an ellipse given by
()\pel)zla+ (ApB2 - bb=1, (5.41)
with
b/a= )\2/)\p = vrl_lnzz . (542)
If we applied the same torque impulse about the 2-axis, the resultant ellipse is symmetric about the 2-axis with
major axis B/4/111],, along the 2-axis and minor axis/T,, parallel and atwethe 1-axis of Figure 5.4a as shown by
the dashed path. Study of the drawing and the preceding discussion reveals that the nutation ellipse always has one

axis of length T{13;1,, along the momentum change vector, and this is the minor axis when torque is applied to the
minimum inertia, and the major axis when torque is applied to the maximum inertia.
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Figure 5.4 Spin Axis Motion Dueto Impulse T4 for Iy > 1 14.

If the platform is unbalanced in the plane of the impulse only the same motion results. If it is unbalanced in
both planes a more complex motion occurs which is an ellipse traced about a moving center and has the general
appearance of an ellipse with axes rotated in the basis e, asindicated by the example of Figure 5.4b.

Next, using (1.10) to transform the rate to the rotor basis e;, and denoting rotor nutation frequency as
As = Ay — w5 = (0 — D)o, the rotor rates are

g = bcosAt — (b — a) cosApt cosmgt + oL CosApt Sinwgt (5.43q)
={(b + a)/2} cosAst — (a/2)simgt — { (b — a)/2} cos{ (A, + ws)t} + (a/2) sSin{ (A, + W)t}
= A cos(Ast + 1) — B cos{ (A, + og)t + B}

Og = asinAgt + (b — @) sin At coswgt + 0. CosA,t cos ot (5.43b)
={(b+ a)/2} sinAgt + (a/2)cosht + { (b — a)/2} Sin{ (A, + )t} + (0/2) cos{ (A, + w4t}

=Asin(Ast + B1) + Bsin{(A, + o)t + B}

where
2A =/(b+ a)2 + a2 (5.443)
2B =+(b—a)2 + o2 (5.44b)
tanB; = a/(b + a) (5.440)
tanB, = o/(b — @) (5.44d)
b+a=Ty[lpnl5l +ln/ly) - 15)/A (5.44¢)
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Thus, while platform rate components are all at platform nutation frequgndye rotor rate contains components
both at rotor nutation frequendy = A, — ws = (0 — L)ws, and afA, + ws = (0 + L)ws.

Using Eg. 4.5, the resultant linear acceleration at a point

ra=el[ry, 1, r3]" (5.45)
is found as

8y = 1A [ACOS(\t + By) + B cos {(\, + W)t + Bol] + FA [ SinAgt — dcoipt] - rya? (5.46a)
= r306JA €0 {(0 - L)t + By} + Bcos{( + L)axt + B}] + r,o6x[c sinhpt — dcod\t] - rya?
a = raAp[A sin(\t + By) = Bsin{(A, + wy)t + B} — rA[C SinAt — dcos\yt] — rpw? (5.46b)
= 1300A sin {(0 — L)oot + By} — Bsin{(A, + )t + Bo}] — raAp[c sinApt — dcos\pt] — rp0f
8g = A(Ws = Ag)[r1 COSQst + By) + 2 SINASt + By)] = B(Ap + 2w4)[r; cos {(A, + wy)t + B} (5.46¢)
+r,sin {()\p + Wt + B,

= Ary(2 - 0)wscos {0 — L)wst + B; =y} — Bry(2 + o) cos {(0 + 1)wst + By + v}
with
y=Tan}{r,/r;} (5.47)

o =17 +13. (5.48)
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5.6 Free (Nutation) Response to an Arbitrary Togue Impulse

In this section we consider the free response of a dual-spin vehicle to an impulse oriented in an arbitrary direc-
tion, i.e., it may have a spin axis (3-axis) component as well as the previously considered transverse component.
The impulse is assumed small enough that linearized motion prevails. Arbitrary mass distribution of the platform is
permitted while the rotor is assumed statically balanced.

We generate the torque impulse with an impulsive férepplied to the rotor at locationwith respect to the
rotor cm which in turn is located Bf with respect to the spacecraft cmis fixed in rotor basiss andr is fixed in
platform basis,. Thus consider the torque

T=[r,+y]xF. (5.50)

The transverse components ofexpressed i, are denoted I T,. The spin axis component gfx F adds spin
momentum to the rotor, however, for linearized motion rotor spin rate is assumed fixed so this effect is neglected in
the linearization process. The spin axis term,of F appears as an external torque perturbation on the platform as
discussed on page 3.3 in connection with Eq. 3.16. Therefore, we denote the 3-axisrteri @fs Tz, and the

applied momentum impulse for torque pulse widit

M = eET[Tl, To, ol = eE[M 1, Mg, Mg]™ . (5.51)
Applying this to plant dynamics of Eq. 2.40 and assuming the platform desper0] yields angular rates
0 = [0y, 0y, 5] " (5.52)
M 1[1 22153 = 133] + Ma[l 12153 + l13l53] + M3[l 13155 + 115l 53]} COSApt [
. ~{IM 215 + Mslgll siha/Ag} sinAgt - 5
[ g
M 1[112155 + l13l 5] + M[l11155 = 125] + M3[l 5147 + 145l At O
= eg(llA')% 1ll 12133 + 113l 23] ol _1|-1 3§/| | ]+ vy |[ 2I3 ;\ /)\12 13]})\C(t)5 Pt g
{IM 1133 13l1 22A2/Ap} sin 0
D ————————————————————— 0
M 1l 1512 * 112l3] + Mallo3l11 + 1ol s3] + M3lrl 1115 — 1]} cos A tD
0 +{M 1[1 231 22A2/Ap] = Ma[l 13l 13A1/A I} SiN Apt + M3A'/15,
where
A = 1qql55155(1 - 1) (5.53)
AS=AAl(1-T), (5.54)

and)q, A, are given by Eq. 2.35. ris given by Eq. 2.47e or more generally 1 - r is theefficient of (2.40))

divided by hil»,15,. The inertia elements; lare elements cﬁ) as defined in Eq. 3.15. Note if the platform is stati-

cally balanced M above anishes and the analysis of this section reduces to that of the preceding section. However,
M3 could be the result of an external force on the platform, in which case the analysis of this section applies irre-
spective of static balance.

The objective here is to determine the nutation response which is just Eq. 5.52. The nutation angle excursions
are obtained by integrating (5.52), i.e., dividingXgy Due to platform inertia asymmetry an asymmetric "pseudo
ellipse" is traced out by the spin axis on a plane as in Figure 5.4 of the preceding section. Note, if we set
M, = M3 =0in (5.52) we again get the solution of that section.

For purposes of insight and to obtain a simple expression for nutation angle we make some simplifications in
(5.52). Letk, =0 which can be effected by a new choic&pfotated about the 3-axis. Further, neglecting product
terms in the imbalance inertiag,|1,3, the rates reduce to
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o My + Ma(11/159)][1/1 11] cOSApt = [Mp + M3(loa/15)][(A/AL) 1 22] Sin At g
w, = et M + Mg(lo5/1 31171 2] COSAt + [My + M3(l1g/15)][(A2/AG )1 ] Sin At U (5.55)
EM 1(113/155) /111 + My(15a/155)/15,] COSAyt + [M l(|23/|§3)0\2/)\p)/|11 - M2(|13/|:’;3)()\1/)\p)/|22] SinAyt + M3/I550

Finally, if we assume approximate symmetry, # I, = I+ =+/17115,, and define equivalent transverse momentum
impulses

M, =M + Mslys/15, (5.56a)
My’ = My + Mslyg/lhs (5.56b)
we get
O (M'/17) cosApt = (My'/l7) sinApt O
w, = el (M,'/11) cosAt + (My'/I7) sinAt E. (5.57)
M 4(115/189) + Ma(l51 30T/ ] cosAgt + [My(125/186) — M1y 5/ IBI[L/1 1] Sin gt + MafiBar

Then inspecting the transverse rate terms of (5.57) the symmetric approximation to nutation angle induced by the
arbitrary torque impulse is

B = [M1'2 + My2JY2[\l1] = My'H (5.58)

Thus, for the symmetric case (and approximately otherwise) we get an equivalent transverse momentum impulse
which yields the nutation angle in conventional form. The reader is cautioned to observe the special nature of M
discussed at the beginning of this section when this results from a force impulse on the rotor combined with platform
static imbalance.

Next consider briefly the case where the initially despun platform is permitted to spin (open-loop) after appli-
cation of torque impulse MIn this case for the symmetric vehicle the platform rates are
(1 + wp/Ap)/17][1 13 COSALt — I3 SINARL] — 3yl 15/HDO
W, = egwp@(l + @p/Ap)/17][l 23 COSAt + 133 SinAt] - mp|23/Hg, (5.59)
0 1 O
where the spin term is, = M3/|g3 and H is the rotor spin momentum. This rate solution is the superposition of the
impulse response from Jvand the response to constant coning torertugsopz' and h_g(k)pz. The latter component is
obtained by applying the constant torques to Eq. 2.400yith 0. The momentum is
O Wp(1 + W/A)/[113COSAt = I3 SINARt = 145] O
H=el g (L + 01 23COSAt + 133 SINALE = 159] E- (5.60)
o + |23C0p = wy[(l 137+ L)1 + Wy/Ap) COSALt = wy/Ap]

Egs. 5.59 and 60 give the angular rate and momentum obtained previously for coning, but with nutation terms added.
Note that the transverse momentum components vanish at t = 0 as they must for a spin torque impulse.
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5.7 Small Angle Attitude and Spin Axis Motions Induced by Rotor Fixed External Tofques
Consider a rotor fixed external torque step along the 1-axis expressed as

T =€l T,[1, 0, O] u(t) (5.61)

= g T4[coswt, sinwt, 0] u(t) ,

wherew, = ws — W, is rotor to platform relative rate. Let the rotor be balanced and symmetric and the platform bal-
anced such thatd = 1,3 = I3 = 0. Then inverting the transform of Eq. 2.40 with initial platform rate

0(0) = €5 [w1(0), 13(0), wy]" (5.62)
yields
[0 (0)cos\pt — wy(0)(A1/Ap) SINALLO]
w, = eg 1(0)(A2/Ap) SINALE + wl(O)coiptSJ(t) (5.63)
O Wp O

[ﬂ()\g + A0 Aplaa] SinApt = [(A + @)/l 14] SinwytD
+ TG - W) (s + a)llzlcoshgt + [(Ag + a)/lzzlcosat ()
O 0 O
Where)\,z) =AA, with A4, A, as expanded in Eq. 2.35. We have maintained the generality of platform asymmetry
and steady spin rates of platform and rotowgfws. The second term of 5.63 transforms to the rotor basis to give

O [N+ A20)Aplas + (g + 6)/Iz2] SN\, = o)t
+[(\3 + A2wn)plaz = (A + @)lpg] sin(A, + )t
+[(Az2 = Ap)or/Aqly4] sin 2ot

OoOodoo

a
@ = & T1/[2(\5 - &)1 O~ [(AF + Aw)/Aplas + (Mg + w)/lp5] cosQy — it

B+ [(A3 + Aown)/Aplis = (A + @)/155] cOSQ + 6yt
O+ [(A2 = AMw/Azlz2 cos 2ot + [(2A7 + (2 + A)wy)Aol22l 0
0 - - - - - - - - _-________
a
O s

Note the presence of two frequenci®s,- w, andA, + w in 5.64 due to asymmetry as obtained elsewhere herein

for an impulse torque. The former is the usual rotor nutation frequency for a symmetric vehicle,

As = Ap — &) = (05 — L)ws, While the latter ig\, + wy = (05 + 1)ws. Here we use rotor ‘effective’ inertia ratio as

06 = (Is + L yg/op)/l . (5.65)

(5.64)

I o o

Oodood

The remaining goals of this section are adequately served by assuming symmetyyS.e, 2 I+, which
also gives\, =A; = A,. The symmetric vehicle rate solution is generalized to a pulse torque however. The pulse
response is useful for thruster nutation control analysis. Specifically the torque pulse is written

T=elTy1, 0, O [u(t) - u(t - t,)] (5.66)

= e, Ty[cosyt, sinaxt, O] [u(t) — u(t—ty)] .
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The symmetric balanced vehicle platform rate solution is

(601 (0) cosh,t — wy(0) SinAtH gsinApt — sinayt 0
w, =€ %MO) sinAyt + 6,(0) Cos}\pt%l(t) + el [Ta/ITAd ELcosAptg cosmrt%l(t) (5.67)
O 0 O O

Orsin{Apt — Agty} + sinayt [
+ e [Ta/ltAd gcos Dot — Ay} - Cosmrtgi(t —t).

0 0 0
The corresponding rotor rate is
[001(0) cosA¢t — w,(0) sinAgtO gsinAgtO
0 = €] 40, (0) SinAgt + w,(0) cosh tg,l(t) + es[TlllT)\S] Leos\ t%l(t) (5.68)

O s D 0 O

B’S|n)\s(t - t1)|:| 00
+ e[Ta/lAd eosAg(t = )it = 1) + eS[To/lrAd A H{u(® - u(t - t)] -

o © 0 90

Summarizing, 5.67 and 5.68 give the angular rate responses of rotor and platform in their respective vector bases due
to a rotor fixed torque pulse for the symmetric balanced dual-spin vehicle with rotor and platform spinning respec-
tively at ratesws, wy,. Inertial, platform, and rotor nutation frequencies are respectively

Ao = 05 = H/l¢ (5.69a)
Ap = Ao — Wy = Oslds — WY (5.69b)
)\sz)\o_wszcs(*)s_wsz(cs_l)(*)s- (5-690)

Next we shall consider the approximate small angle inertial motion of the spin axis and momentum vector
with a rotor fixed step torque. Letbe a despun basis approximately inertially fixed which is related to the platform
basis ag = B((A)pt)Tep where B is given by Eq. 1.10. Transforming the platform transverse rates to the inertial basis

_ La(0) coshot — w,(0) sin)\otD+ T, OsinAt O

¢ 5.70
1(0) SiMAot + 1y(0) O I7Ae 1 cos)xot%’( ) (5.70)

T, Bsin{Ast = At} U T1 Bsinngtt
L Ao Sl}m(t‘tl)"' 1 Nos
ITAs [1€0s Pot — Agty} 0

ors Choscag U0 ~ =)

_ [dd;(0) cosA t — w,(0) sinAtl T, 25in[(hg — 62U 2]§os[(?\O + u)s)tIZ]E“ ®

1(0) sinA,t + w,(0) coskotg 1A in[(A, + wg)t/2] 0

T, Bsin{Aot = Agty} = sinogtt
41 in{A, st} stl],l(t‘tl)-
ITAs [jcos Pot = Agty} + COSWst
The latter form of 5.70 is sometimes a more easily recognized form of the rate signal in a simulation, i.e., a signal of
frequency K, + ws)/2 = (05 + 1)w/2 with a modulating envelope at frequeny, £ w)/2 = (05 — 1)ws/2. When
the platform is despun 5.70 is the platform rate. Integrating the step portion of 540} for small angle
motion
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[do, (0) SinA,t + 6, (0)[COSAt — ]

_ 1 — cosAt)/A, — [1 — coswt]/w0
e“e‘(0)+m°@>2(0)sinxot— w1 (0)[coshot ~ 1] g

T/ITA
*[Ty/irAd —[sinAot]/Ao + [Sin wgt]/

[u(t) (5.71)
O

[d, (0) SinA,t + w,(0)[cosAt — ]

U D
=0,(0) + 1/)\0%‘)2 [T1/H)\5]D] Gs LgosAt Q:os(,ost[lm()

(0) sin\ot = ; (0)[cosAt — 117 mo %mm gsmwstm

where here the latter form is written for easier visualization of the motion. Depicted on Figure 5.5, this motion can
be viewed as the sum of a constant plus two vectors rotating respectively At tdsy. On the figure labels the
substitutions\, = w, andog = ¢ are used.

Concurrently, the momentum vector angle in inertial space is

H:oswst

@(t) = @(0) + [1/H] IT(t)dt =@0) + [T/H(;os] |]J(t) (5.72)
Inwt 5

= @0) + [2T/Hw] sm[wst/2]§m[k(fs)si/é]]m ®

which, as depicted, is the sum of a constant and a term rotating at spiq rate

The response of this section can be used to predict behavior under numerous circumstances where rotor fixed
torques are applied. One source of a rotor fixed torque is the pulse from an ideal apogee boost motor which has mis-
alignment and offset errors producing mispointing and reduction in the delivered velocity impulse (see Figure 5.6).
We use this as an example for application of the geometry of Figure 5.5. The maximum nutation angle (between
momentum vector and spin axis) is seen to occur when the momentum vector is at the origin and the spin axis is at
it's maximum excursion along the 2-axis of Figure 5.5. This maximum nutation is &JJXH o|}. Attitude error
is the instantaneous excursion of the momentum vector from its initial position and is boundeddy ZJghsid-
ering the average spin axis position over a torque pulse of many spin and nutation cycles duration, it is Bgted that
0, have average values Tdi and zero respectively. Thus, on the average the boost acceleration has a pointing
error of T/Hys. Finally consider the thrust loss due to coning. The coning motion produces a spinning transverse
acceleration which integrates to zero net velocity change and hence represents a reduction of the motor delivered
impulse. If the thrust vector were offset by a fixed angle from the spin axis, then the velocity impulgé ikst
related to the net impulse delivered, Wy AV/V,=1-cosd=d%2. V, is delivered along the direction
6, = (-T/Hws, 0), while it may be observed th&wbetween this average direction and the instantaneous thrust varies
from min{d} = T/Hws to max{o} = (T/Hw)(1 + o.)/(1 — o) with a mean valued, = (T/Hw)/(1 - o5). One
approach to thrust loss estimation (suggested by D. Challoner) is

AVIV,=1-cosd=1-(1-8%2)=5%2. (5.73)
Then using 5.72 and manipulating somewhat
& =16,(t) - 6" = [TAH wy(0s — D} ?[L + 0% ~ 205c0s {(Ao ~ wo)t}] (5.74)
such that
52
0" = (1 + 02)[THH wy(os — 1)}12. (5.75)

Although this probably doesn't give the loss for any real situation it probably does give the functional dependence
on important parameters. Summarizing the apogee boost error bounds are approximated:

Maximum Nutation : 2T/Hy|1 - o] = 2T/HPg| = 2p (5.76a)
Maximum Attitude Error : 2T/lebg (5.76b)
Average Thrust Pointing Error : Tibd (5.76¢)
Percent Coning Loss AV/V, = {(1 + 02)/2}[T/{H wy(0s — 1)}] (5.76d)

={(1 + o2)/2{THH A2 ={(L + 02)/2}p” .

Percent Coning Loss(Imbalance)=:{ 02/2}[T/{H wy(os — 1)}]2 = {02/2}[T{H A} % = {02/2}p? . (5.76€)
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A detailed expansion of the coning loss with simultaneous disturbance torque and dynamic imbalance in both axes
provided by Jack Murphy is recorded here as
z2
AV : &
—_=1- ~ 2
V. cos& 5

2 2 2 2 2 2
1 1 o,T, c.T, o, o1 Gylis Oyl
=2 [“02] |:H0)s((52—1)] *[Hms(ol—l)} +T1|23[[H(62_1)]} ‘Tz'ls[[H(ol—l)]} +[ ] +[ } '

Is(Gl - 1) lS(GZ - 1)

If the transverse torque is known, and the engine is restartable, a simple two-burn profile can be used to minimize
the average thrust pointing error, 6., and reduce the thrust impulse perturbation AV, (Ref. 33).

_91’ -(l)l
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Figure 5.5 Spin Axisand Momentum Vector Motion in Inertial Space Under
Constant Rotor Fixed Torque Without Nutation Damping.

Constant Rotor Fixed Torque Without Nutation Damping.
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AVg= 2V SnB 2

f o, AV = Vv 2- 2VV cosh,, + V2

Vo v, =[labit

<3 V = [a(t)ct
z 0 0= T

:// e H(DS

|/

/ Vo _froZl T

‘ V 2 |[Ho(1-o)
Y& =10+ 9F
el —

Figure 5.6 Velocity Impulse Error Definitions.

Transverse Inertia Asymmetry and Dynamic Imbalance Spin Up/Down

A rotor fixed transverse torque in the presence of rotor transverse inertia asymmetry can produce a secular
spin torque (Ref. 4). Let the rotor transverse inertia asymmetry be denoted Al = I3, — 15;. Then the spin torque
may be written

— S S S
T3 = — AlF w0020 — 17302005 + 153010005 -

The asymmetry component is maximized when the transverse rate is equally distributed between the two axes at
T; = [Al$/2]w?. Using the transverse rate due to an open-loop transverse disturbance torque T, from Eq. 5.68

2 r 712
Al% AF| T AlS T 1 . do
To=—T2=—"T| 1| =20 | S o=l —o .
3= e 2[|sz 2 |ho-1| 02 =7
Integrating,
- -2
Al3 T
3 3 T 1
03 =0gp + = | ——— | t.
ST 2| (e -1) |

For the imbal ance effect, using the transverse rate solutions from 5.68

T. = —153T1 + 135> Ws —133T1 + 135T>
g=| 2t B2 s_| 1817 82
As lt(c-1)

so the asymmetry spin acceleration is proportional to 1/m? while the imbalance acceleration is constant. Note that
the transverse rate due to the imbalance itself, 6,,ms does not couple because it is in the same plane as the imbalance.
However, as the last form shows, the transverse rate cross coupled torque is exactly that which results by viewing the
torque in the principal basis.

T :| =02 T1+ 01T,

Dead-Beat Thrust Startup

When a velocity change is executed with a thruster having a large transverse torque, for example a radially
offset axial thruster, the coning and nutation rates and angles become undesirably large inducing a large thrust loss
and/or pointing error. By using a properly timed startup pulse it is possible to execute the maneuver without nuta-
tion. From 5.68 the nutation during thrust is normally

@4(t) = pAel[sinAgt, — cosAgt, O]

so the technique is to establish an initial condition with the startup pulse that cancels this steady state nutation.
Beginning with no nutation, firing a one sixth nutation period duration pulse, At; = n/3, produces rate
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w(t) = (PA/2)el [siN At + V3 cosAgt, — COSAgt + V3 sinAdt, 0]

= pAo&l[sin(\gt + TU3), — cosQt + T73), O] .

Then initiating continuous thrust aft, = 2173 + 2nmt= (1 + 3n)(2¥3) will induce nutation that cancels the initial
condition resulting in no nutation during the continuous burn.

The thrust pointing error can be minimized by positioning the average spin axis position in the desired thrust
direction. This can be implemented by initially offsetting the attitude in an arbitrary direction of magnitude equal to
the cone angle, then starting the maneuver when the transverse torque vector is inertially aligned with the attitude
offset rotation vector. When combined with the deadbeat it necessary thatlte equal to an integer number, say
m, of spin periods to preserve the pre-establistvedage attitudgosition. This leads to the relation

1 onth O 2
t2—t1:)\g+2m'[g:;[%+ngzmu:,
S S D

giving nominally

n=Jo-1m-1/6.
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5.8 Small Angle Spin Axis Motion Induced by a Despun Platform Fixed External Taque

Assume initial platform angular rates
@;(0) = €56y, (0) = ep[wy (0), wo(0), ws(0)]" (5.77)
and a step torque
T =¢[T4, 0, 0] u(t) (5.78)

applied at time zero. We wish to determine the spin axis and angular momentum vector motion givensirel|
enough that linear motion prevails. We first invert Eq. 2.40 to obtain the free response to the initial condition, or
equivalently to an impulse inpuf, = eglpmp(O)é(t). The result is

@y = ep[Wpy, Wz, Wya] " (5.79a)
with
Awyy = { (22155 = 153l 11 = 112155 + lualoall iz = [1al22 + |12|23]|13} w,(0) cosAt (5.79b)

- { {AA/[122A0(1 = N)TH 112601 (0) + 122602(0) = 123633(0)] = 1231 13(A1/Ap)[ 113001 (0) = 12300,(0) + |§3&>3(0)]} sinApt

Dy ={ 111015 = 12l 2 = 11215 + islaall 12 = [ al1s + 112l 1]l 25} 602(0) COSAE (5.79¢)
AN 1A = DI 12601(0) = 112602(0) = 113005(0)] + 1131 22 MafAp)[ =1 13601 (0) = 125605(0) + 18505(0)]} sinA,t

Nwys = { [ 111 22A AN 1300, (0) + |23032(0)]} [CoNt = 1] + 1111 20A1 Ax/A3]15505(0) (5.79d)

+ { (1121131111 + Taglagl2oA2](wq (0)/Ap) — [112] 05l 20A, + |13|22|11)\1]((*)2(0)/)\p)} SinApt
whereA,, is platform nutation frequency,
A = y4lpl55(1 = 1) (5.80)

and r is defined by noting thAt is the coefficient ofin A(s) given in Eq. 2.40j. Also note that with the platform
despunAi/A, =T, and [Ai/A, = I+ =/11115,. The secular 3-axis term will vanish if there is any position con-

trol. If the platform is assumed balanced and symmetric the 3-axis t&we snishes and the remaining coeffi-
cients reduce to simply the rate initial values. Next we invert (2.40), as in (2.43), to get the driven solution due to
step torque 7. This operation gives

0 [1 22155 = 155 sin At g
Wy = & T1/(ApA) Hl 10155 + 113153] s?n At + 1551 20(A/p)[L — Cos)\pt]g. (5.81)
|13|22 + |12|23] Sin )\pt + |23|22(>\2/)\p)[1 - COS)\pt]D

To obtain the spin axis motion we integrate, dropping the spin axis term as it is assumed a despin control system
maintains the platform despun. Hence,

O 122155 = 133][1 — cosAt] i
0(t) = 6(0) + engl()\gA')gl 12153 + 113lo3][1 - COsApt] + |§3I22()\2/)\p)[)\pt - sin)\pt]g. (5.82)
O 0 0O
Simplifying to the balanced casg F 1,3 =0, and |, = 0 as well,
0(t) =6(0) + e;Tll(Ill)\S)[l — COSApt, Aot — SiNA, o . (5.83)

The motion is shown on Figure 5.7 where the notatjpn w, is used. The corresponding attitude (momentum vec-
tor) motion is

ot) = @(0) + (1/H)IT1(t)dt =@0) +tT/H =@0) +tT1/lgu (5.84)

and this motion is also shown on Figure 5.7. It is simple to showBif@t= @,(t) every half nutation period, and
0(t) = ¢(t), i.e., the spin axis and momentum vector are coincident every full nutation period.
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It is of interest also to know the angular rates in the rotor basis due to the platform fixed (inertial) constant
torque. Using again the balanced platform representation and transforming to the rotor basis

sinAgt + (Ao/Ap) Sinoyt
05 = €1 T1/(112p)| — COSAgt + (Ao/Ay) COSEX |, (5.85)
0

where w; is rotor to platform relative rate and As = A, — o, is rotor nutation frequency. Thus, both the anticipated
nutation and precession terms are evident.

62 07

3

Sy U 6(t), Spin Axis

N \\> // Impulse: AH = Tr/A

\

61,01

Figure 5.7 Spin Axisand Momentum Vector Small Angle Motionin Inertial Space
Under Impulse and Constant Despun Platform Fixed (Inertial) Torque.

Space Under Impulse and Constant Despun Platform Fixed Torque.
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Nutation Free Precession Maneuv

Given the necessary torqueing capability, it would be desirable to perform a pure precession maneuver without
nutation. For this purpose consider the simple balanced case (all products of inertia zero) and allowing nonzero ini-
tial conditions, sum 5.79 and 5.81 to get

B O sinAqt O [60(0)cos\pt — (A1/Ap)w,(0)simApt
@, = €] [Tl 2215/(A A)gxz/xp)[l cos)\ ol Oy %oz(omog\ t = (\/Ap)wy (0)simtH]. (5.86)
B 0 D 0 0

Settingw, (0) = w3(0) = 0 andw,(0) = T4/111A, = T4/H yields the desired pure precession over the intervaldst
() = To/H[u(t) - u(t - ty)]
when the control torque is
T = e {T1[u(t) — u(t - ty)], 1, To/H[S() - 3(t - t;)], 0} . (5.87)

The initial impulse torque establishes a nutation corresponding to 5.79 that cancels the nutation induced by applica-
tion of the step precession torque of 5.81. Removal of the step at tinteites a new nutation that is canceled by

the additional negative impulse at the same instant. For the general unbalanced case, when one equates coefficients
of simt, cos\t in 5.79 and 5.81, six equations in three unknowns result. Thus, it does not appear there is a solution

of this form that gives the nutation free precession maneuver.

Spinning Spacecraft Wobble Capture Maresuv

Consider a single body spinning spacecraft spinning about its maximum principle axis of inertia, which is dis-
placed from a desired or geometric spin axis by a dynamic imbalance product of jgeffiad maneuver investi-
gated here, subject of a U. S. Patent (Ref. 32), isoiethe spin axis into the inertial position of the principal axis,
and the angular momentum vector H, and arrest its coning motion. Initially the H vector is inertially fixed, with no
torque on the vehicle, and the spin axis cones at spin rate about it at the wobb®, anglg[l+ — 15]. After the
capture the spin axis is fixed in exactly the direction initially describing the momentum vector H, and the H vector
cones at spin rate about this line with cone afgle T/Hws = 1;30%/1.2 = |14/l The capture scenario is sketched
on Figure 5.8 below. Observe the ratio of momentum coning angle to wobble angle is
0/, =[I7 - Ig)/ls=[1 - 0)/o = 1 - o, which is small when the inertia ratio is near unity.

With no nutation prior to control applicationt) = [6,,, 0, 0]'. If at time t = 0 we apply a step torque
T, = — 1302, (see for example the right side of 2.34b) the initial wobble rate becomes an initial nutation rate
w () = 6,s. Now the objective is to null the nutation while driving the spin axis to the position of the initial
momentum vector. With adequate sensing, one might apply control feedback torque to simultaneously null nutation
rates and spin axis position error. Alternatively, we might null rates in a manner that approximately preserves atti-
tude. One simple open-loop solution that is helpful in underatanding the problem is to apply a sinusoidal transverse

nutation damping torque in the body at body nutation frequfeisy[)\g +r(3Asws + 2609)]/(1 - r). Such a torque is
expressed

0, cosh tD 0, cosy COSA g —Tosiny sinA S0 O, coswst CcosA d-Ts smoostsm)\ t0
T= eSBTZ sinA t =@ gz cosy sinA S+ Tysing Ccosh tD— e gz coswstsm)\ t+T, smwstcos)\ tD (5.88)

D 0 D O 0 D O 0 D
[T1 COSAGt + T, COSALt] [COSA,t0
= > E*Tz SiNAGt + T SiNAGt B, = TTo%in)\otg,
0 0 O o0 o

the latter expression for, T, =T,. One method to solve for the response is to substitud®r w, in the
required terms of (2.40). The resultant transverse rates due to this torque approximate
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o(t) ~

( l[Tl f- r)Tz]cosglst} T {cos ist] | (5.89)

20— 1)lr | [T+ (L - OTylsinAgt | I | sinigt

This sinusoidal torque can simply be applied for enough time to allow the driven nutation frequency rates to cancel
the nutation, i.e., t = w.(0)I+/T,, and then removed while the above mentioned step torque remains on to cancel the
wobble dynamic torque. If the nutation period is long in comparison to the spin period, the nutation damping sinu-
soidal torque will not change significantly over a spin period, and will not produce a large attitude perturbation. The
attitude error can be more quantitatively bounded by integrating the torque of Eqg. 5.

t | COS At sin At

t
0,()= =¢ % J.Tdt = ﬁ" j sinAot [dt =g H?t 1—coshet|. (5.90)
0 ol o ° 0

From this expression we see as expected that the attitude excursion due to the nutation damping sinusoid is
oscillatory at inertial nutation frequency. Suppose we choose to damp the initial nutation in n body nutation periods.
Using t = 2nmt/A,, and equating the coefficient of (5.89) to the initial rate m;(0) = 6,0, gives T, = l;302/[2nn]. The
bound on attitude excursion is max {0,} = 2T,/[HA,] = l13/[nnols] = 115/[nnlg]. The implication that making n large
will arbitrarily reduce attitude error will not be correct for large wobble angles where the linearization becomes
weaker.

Initial Spin
Axis Coning

0y~ (1-0)6,
Final H Coning

Einal Spin
AXis Position

>

Initial H Position

Figure 5.8 Wobble Capture Geometry.
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5.9 Nutation Induced by a Uniform Transverse Togque Impulse Series

Uniform Pulses

Consider a series of torque impulses of magnifiydepplied at periodt and all in a fixed direction in a vec-
tor basis from which nutation frequency is observed.afwo of the most frequently encountered cases are iner-
tially fixed pulses withh = A, = ow, or body fixed pulses wheke= Ag = (0 — 1)ws. Let the nutation damping time
constant be. Then the nutation immediately following the nth pulse is

91=60

62 - ele—(At/T = jAAY) + eo

B, = 6, CUTIMY 4 g (5.91)
=0, % e (i =~ DT - jray
i=1
n .
=8, > x4V =g,[(1 - x"/(1-x)] .
i=1
where
x = g GUT-IAAD (5.92)

Substituting x back i8,, gives
n - e—n(At/r —jiAAY M
O, = GODD—l T VT B (5.93)
whose magnitude is

/2
[0 + 20T = 2T cos(RAL) 5|

190l = eog 1+ 200 - 2e M cosQAY) (5.94)
As
T - oo [yl e@%é. (5.95)
Pulsing at resonance with nutation
_ ot
AAt - 2mg |6,] - GOEWB_' nB,, ast — oo . (5.96)

One of the most common instances of nutation buildup is spin period attitude trim. However, with insertion of the
properAt the relation is valid for any pulse rate greater or less than spin rate provided impulses are uniformly spaced
in the vector basis with nutation frequencye.g., uniform stepping of a platform or rotor mounted instrument. The
reference* gives a catalog of impulse magnitudes for various types of instrument stepping disturbances. A unique
example is spin rate pulsing of a rotor fixed thruster. This is a pulse train fixed both inertially and in the rotor, yield-
ing cos At = cos 2mo considered in an inertial basis, or cadh= cos[2n(o - 1)] = cos 2mo when considered

in the rotor basis.

An additional solution given by (5.93) is as follows. Consider a rotor mounted thruster spinningu.ataiate
impulsively fired at intervaldt. Thenthe attitude perturbation after n pulses is given by (5.93) withw and
T - 00. We have preiously noted that nutation for this case is given by (5.93) Wwith(o — 1)ws.

IDC 4091.2/202 (HS331-3706), "Nutation Induced by Periodic Impulsive Disturbance of a Spin Stabilized Spacecraft
Having a Passive Nutation Damper," L. H. Grasshoff, November 10, 1972.
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Asymmetric Pulses

Here we consider pulses with a fixed orientation in some basis but alternating in sign. Then

91 = 60
62 - ele—(At/T = jAAY) + eoeiT[

6, = 6, & VT -\ 4 g - 1n

- g,dn - D % (i - D@tk - Ant + )
=1

= 0,6~ I3 XD = g = IM(1 — x)(1 - x)] .

i=1

) Eh. _ e—n(AtJt —JjAAt+ M O
- 90e|(n - l)T[D
O

1.

— e—(At/t = jAAL +
1-e@vt-j i 0
This gives nutation magnitude after the nth pulse of

12
6.= 6 %l + @2Vt _ 2@ VT cog[nAAL — T o
" OD 1+ 200t - 2t cospAt - 1)

In this case, as

Usin[n\At — m)/2]1U

T - 00; By > Oo——n——— 0
Ol °gsin[AAt - /2]

while at resonance
D_'I_ _ e—nAt/r O
o~ a

(5.97)

(5.98)

(5.99)

(5.100)

A unique application of this is rotor fixed thruster pulsing at twice spin rate suchtthat/w,. Considered
in a despun bask = A, = 0w, and the pulses alternate so the nutation is given by the result of this section. Alter-
nately, considered in the rotor basis A = (0 — 1)ws and the result of the previous section applies and predicts the

same result.
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6.0 Miscellaneous Dual-Spin Dynamics Phenomena
6.1 Nutation Resonance

Nutation singular points are discussed in Appendix B, however two rather unique and well known singular
points with somewhat more analytical detail in this and the following section. Consider a dual-spin spacecraft with
rotor and platform spinning respectivelycatandw,. The approximate platform rates derived from small angle lin-
earized equations are given by Equation 5.28. By a proper choice ofepasescan write the platform rate as

0y, = eywy, 0, @], (6.1)

where

%27"" +123/2l22) = — w125 + 135 /[1 35006y + 155 = 144] - (6.2)

Herew, will be along a platform axis normal to the plane of the progli€f + 12;. The corresponding cone angle
between the spin axis and the angular momentum vector is from (5.30 and 31).

tand; = wy/wy, = V1% + 135 /[1 3305/ + 155 = 144] - (6.3)

To get this solution, recall that we have assumed a symmetric balanced rotor. Also, nutation has been ignored; how-
ever, for smalB. the system is linear and this "free" solution can be added by superposition. If we now admit a
rotor transverse asymmetry, I 13, (or equivalently, §, # 0), l;; may be expressed with an appropriate choice of
basis as

g =13 + {11 52+ 1320/2} - {1 32 — 131)/2} cos Ayt = Iy + [Alg/2] cos 2t . (6.4)

Hence, the rotor asymmetry is seen to cause the platform transverse rate vector and the cone angle to vary at twice
relative rate. Botlw, and6, have approximately constant values to which are added a smaller component varying at
20y. Numerous dynamic simulations have shown that during a platform spinup or down when this frequency and
the platform nutation frequency become approximately equal, the platform coning motion due to rotor asymmetry
induces a rapid and substantial buildup of cone angle (nhutation). The phenomenon has become recognized as "nuta-
tion resonance."

An approximate relationship betweegandcw, at resonance can be obtained. We write momentum as

H =ej[Hy, 0, Hs]" = gy H[sin @, 0, cosb]" (6.5)

where H= [H|. Then equating twice the relative rate to platform nutation frequency

Hs
20, = 2(ws — =N = A - w, =H/lt —w, = - .
Wy = 2(0s — W) = Ap = A — Wy Ny —wy, - cosO] Wy (6.6)
S P
_ s + 1550 _
= 7IT cosh, Wy = 050/ oSO — Wy, ,

and rearranging

_ cosh; - I34/17 U

6.7
0€os8e + 154/11 7
For smallB., the approximate
2 - 13,/1; 0
W, = EAARTANE (6.8)
+ 15l

Denoting the rotor rate with the platform despunwgs and considering a platform spinup which approximately
conserves momentum in the spin axis

Ws = 0o — 15300/133 - (6.9)
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This leads to the approximate relation at resonance of

U2 -3,y U U 2-g, U

= ) 6.10
> + 2154/13 Ewso + 2134/13; gﬂso (640

In such a spinup, the final platform and rotor rates are equal, and closely
@t = 13500/[133 + 154] - (6.11)

Requiringw > ), wherew, is the resonant value aeyields
1-0
r,> 3%, (6.12)
O 0

If 0> 1 the right side is negative, indicating that for this case resonance is always encountered in a spinup. If
o; =133+ 3]/IT <1, the spinup will eventually diverge to a flat spin wih approaching 99 in which case
numerous approximations @ie donot hold. Extensive simulations of present day vehicles show that in this case
resonance usually occurs near the end of flat spin divergence and is rather benign. Fordhe& dasey, the
aboveapproximations have been found reasonably good when the platform imbalance is small enougi®to keep
small. However, in such a case, a platform spinup results in a short period of spin about an intermediate axis of iner-
tia during which@, diverges as an overdamped exponential (closely). To some degree, this latter effect may be
inseparable from nutation resonance.
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6.2 Nutation Phase Lock*

If the despun platform on a dual-spin vehicle hawng 1 (gyrostat) is permitted to spinup, it will at some
point develop a spin ratg, equal to inertial nutation frequenay. When these two rates are equal, the centrifugal
torques due to platform dynamic imbalance rotate at the same rate as the vehicle transverse rate vector. If insuffi-
cient despin torque is available to further spin up of the platform, tneadrque and rate vector become phase
locked such that the dynamic torque adds momentum in the transverse plane as despin torque (friction et. al.)
removes it from the spin axis. In this phase locked condition, transverse rate (nutation angle) grows linearly with
time producing an eventual divergence to flat spin. Equations for transverse rate and nutation angle in the phase
locked condition are derived below.

Consider a dual-spin vehicle configuration with symmetric balanced rotor’i@ncﬂ).l Then Equation 2.34
applies and, truncating small rate inertia products, it reduces to

Orooy + Aplrap0 EH23‘JJSD
eggTwz - Ap'T‘*’lB: elg |13UJSE (6.13)
b -
O 3303 O 0T O

assuming no external torques. We wish to transform to an "approximately inertial" despley bgpsimmoving the
platform spinw,, i.e.

Ocosg, sing, 00
€ = ELsincpp cosgp, O %O . (6.14)
g O 0 10

Then the platform rate transforms as

0 = €[y, Wy, 03 + 03] (6.15)

= ey [y CoS@, — 0, SINQ,, Wy COSP, + Wy SING,, Wg + Wp] T = e[y, Wy, 03 + wy] ",

and the angular accelerations similarly.
Transforming the torque equations and substituting the rate expressesivies,

[r@y + Aolredy 0 HwfV/13; + 135 cosp, - V)B

e rey = Aolrex 0= el VIZ, + 13 sin@ ~ V)0 (6.16)
|p : O O
O 33('03 O 0 T3 0
with
siny = I,3R/13; + 13, (6.17a)
cosy = l13/17, + 13, (6.17b)

Setting, = wyt and applying sufficient perseverance, the solution is

wpsiny/1Z; + 12,

(0 = () cohat =~ (O) simhot = —E5- = A

g-{ COSA,t — coswyt} + (1/ tany){ sin Aot — sinwyt} B (6.18a)

*A more precise derivation than given here yields the phase lock platform rate as
wp = (HATHL = (I8/17)?° + (13, = 13)/217}.
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wj cosy 125 + 1,
(7\'0 - mp)lT
Combining the sinusoidal sum terms as products at sum and difference frequencies,

0y (1) = ©,(0) COSAgt + y(0) SN Aot — [-{ 008t — COS@pL} — tan ] Sindot — sin wpt}] . (6.18b)

2.2 2 [q _ ]

(1) = 04(0) COSAot — 1, (0) SN At — 2 'Ilj * 1z S'['([i%_ m"’%z] cos{(ho + )2 — 7] (6.19)
- 0 p -
2. 12 2 [q _ ]

0, () = ©,(0) COSAot + 1(0) SN Aot — 2 I|1: * o S‘F([)(f"_ mm;/);f] SN[(ho + O)U2 7] . (6.19b)
- O p .

Setting theinitial conditions to zero, the transverse rate magnitude is

td\13 + 15 [ sin(ho — wp)t2
or(t) = = Oo—ot2 | (6.20)

Thus, in the limit at resonance A, — @y, wr(t) grows linearly with time as

L VI%3+I§3 . (6.21)
Ir

Integrating the forced rate response in the limiting case as A, — w,, yields

or(t) -

12 212
0,(t) = @ [00S(Aot — 1) + Aot SN(Agt — 7) — COSY] (6.222)
T

= —[l13C0SAot + log SINAGt + Apt{ 113 SN Aot — g COSAL} — I43]/I+

—\/ 12, + 12
0y(t) = % [Sin(Aot — V) — Aot COS(At — ) + SiNY] (6.22b)
T

=—[l13SinAgt — Io3 COSALt — Apt{113 COSALt + oz SINAt} + o]/l .

From these equations the spin axis divergence path is sketched as Figure 6.1 below.

Oy
A
- - =
/ : \\\ > eX
l13/l7 \ —
: l13+ l2afly
I W\/
\ Tl l
\ /
r N /
Spin Axis N 2
~ e

Figure 6.1 Trajectory of Spin Axis Divergence on Inertial Plane in Phase Locked State.
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6.3 Nutation Spinup

An approach sometimes employed to increase the spin momentum of a spinning spacecraft is to induce trans-
verse axis momentum (nutation) with a thruster and then transfer this momentum to the spin axis via a momentum
conserving nutation damper. df is the initial spin rate with no nutation, and nutation arfgie induced with
thrusters, the initial and final momenta are

Hi = 135006 (6.23)
H; = 13504/ cOSO . (6.24)

Hence,
AH = H; = H; = 13304[1/ cost — 1] = 1350w (6.25)

whereAw is the change in spin speed that will result when the induced nutation is transferred to the spin axis. For
small angles, the latter approximates to

AH = 155000%/2 = 15500 . (6.26)
An efficient approach to induce nutation is to apply thruster torque T for half rotor nutation periods. Let
sl = lo — L (6.27)

be the rotor nutation frequency. Then the torque pulses are of dukatian'[Ag| and Appendix C shows that when
properly phased, each pulse will induce nutation

8 =2p = 2T/H\| = 2T/[153)0 — 1|wi] . (6.28)
Substituting this in the small angle approximatiod\blf the spin speed change per pulse is
= [TH13A)1P[2/wy] = [T/(155l0 - LP[2/ed] - (6.29)

If the nutation is induced by a thruster with transverse torgdrespinup fuel sensitivity can be written

5 = M_EAtﬂl OTn 01 Omw2 m 20
A, Olep DAY SnlAsllspDAws Aalspr

For a spin thruster with spin torqugr the spin increment &w = [rfAt)/I35, while fuel consumption sensitivity is

Aw [f tD 1 13
= A _ I3
Ao Dlsp DAU)S lslsp

Then nutation spin up is more efficient when

s, O3, 2l O CLOD  r%f

5 Tﬁmg A ATy |

6.5



6.4 Allspun Recovery Static Motor Torque Bounds and Rocking Frguency

Let g be an inertial basis with 3-axis along the momentum vector as depicted below on Figure 6.2. Assuming
no external torques, this vector is inertially fixed. Denote the spacecraft inertial spin phase about the momentum
vector by and the cone angle by

H'2 H2 0
0. = Ta -FV%H 0 (6.30)
o ™ 0
where
H = gfH = ef[H1, Hp, Hal" (6.31)

ande, is a platform fixed basis with 3-axis along the bearing axis. Define a thirdepasts 3-axis along the bear-
ing axis and 1-axis along the transverse momentum veicterel[Hy, Hp, 0", Finally, denoting the displacement
of g, from g, asp,, the bases are related as

[cosB, O -sinB.Mcosy siny 0O

- -0 ML g

e, =Ci¢ 0 _0 1 0 N singy cosy 0% (6.32)
sin6. 0 cosB, o O 0 1
OcosB, sinB, 00O

e =C ) = B—sin B, cosB, O %‘, (6.33)
g O 0 1

with

By =Tan UH,/H,] . (6.34)

The inertial angular rate & is then

w, = &[0, 6, 0" + eJ C1[0, 0, 4] = e[~ sinBy, B, cosB]" = ef ey (6.35)
and the platform inertial rate is

(W sin6, cosf, + 0 . SinB,0 m)plm
W, = &, + &[0, 0, Bp]T = equJ sin6, sinB, + 6, cosB, = YA ep%op . (3.36)
O cost; + B, O mopsm

The dynamic torques exerted by the platform along the bearing axis (3-&giarafe,) are obtained by dif-
ferentiatingwy, and substituting in Eq. 2.16. The resultant torque is

Ta = = 195051 = 153002 + 1536003 + [155 = 191]W100p2 = 15501003 + 1730002003 + 17,[wh, — 00fy] - (6.37)

Substitutingw,, @y, in terms ofy, 6., andB,, and taking all derivatives closely zero the approximate static torque
bound reduces to

Tz = (W%/2)[-Al, sir? 8. sin {2(B, + y1)} +7 12, sin D sin@, + V2)] , (6.38)
where
Aly =15, = 10| = V(T5, = T2 + (2172 (6.39)
yi = (U2)Tan[219,/(15, = 19))] (6.40)
Yo = Tan [15,/15.] (6.41)
and
¢ =H/, (6.42)

with |, the maximum principal axis of the all-spun vehicle with the rotor to platform rotation adjusted to maximize

Im. Al, is the platform transverse inertia difference wéthchosen such thafj=0. Thus, the maximum s> 0

over 3, € (0, 2m) is the static torque limit which must not be exceeded to avoid platform spinup during flat spin
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recovery of a prolates(< 1) dual-spin vehicle. Similarly this bound must be exceeded to despin the platform on an
all-spun oblated > 1) dual-spin vehicle.

The torque limit & derived alove isthe static torque required to hold the two bodies in a fixed relative posi-
tion B, as a function of that position. For sofg in the equilibrium trap stateF 0 and at some other point it is
maximized. The latter torque is what must be overcome in a static sense to initiate relative spin between the two
bodies.

If Ifs = '23 =0, the inertia matrix may be expressed in a body coordinate system rotateg} ipithe angle
y1 such thatl, = 0, and the torque bound reduces to

T3 = (W?/2)Al, sir? 8 sin 2B, . (6.43)

The parallel bound for the rotor is derived in the same manner, and may be obtained lipmsErting rotor
inertias.

If sufficient motor torque does not exist to overcome the maximum static torque givermbgvEthe allspun
trap state can sometimes be overcome by rocking the two dual spin bodies with respect to each other. A natural fre-
guency is established by the vehicle momentum state and mass properties for small motions about the allspun equi-
librium state. By linearizing the equation fog Bbout the equilibriun, and denoting perturbations By, we get

. . _ T 2 . .
Ts = 15,8, + (112)[20, sir? 0, = V1557 + 15 sin De]B, = 158, + Q7B . (6.44)

For flat spinf, = 90° and the natural frequency is
Q% = YP[AT/15,] . (6.45)

By pulsing the torque motor at this frequency a recovery can be initiated with much less torque than that given by
the static bound. More generally one can solve for the steady state allspun con@, anglesubstitute in the
restraining torque equation,. TFor a symmetric vehicle with4d = 0 in the allspun state

tan EC = |23/[(|T - |33)/2] (646a)
sin B = — 1pa/{[(1 1 — 133)/2] + 155} (6.46b)
cos B = - [(I — o) 2JAI(1 1 — 133)/2]% + 155} (6.46¢)

where the inertias are for the total allspun vehicle.

If both rotor and platform are statically imbalanced the trap state becomes much more severe. The relation-
ship of the two body mass centers and the bearing axis for this case are depicted on Figure 6.3. Some static torque
maintains anglf3, between the two bodies as depicted. For a stable spinner the spin vector is approximately out of
the page as indicated by the circles, while for a flat spin condition the spin vector will be in the page approximately
normal to the line joining the mass centers. In either case it is clear the body mass centers tend to opposite sides of
the bearing axis and some minimum torque will be required to initiate more thahr@@tive motion.
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Figure 6.2 Geometry for Analysis of Dynamic Imbalance Trap State.

Figure 6.3 Geometry of the Static Imbalance Trap State.
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For this case a somewhat different approach is taken to derive the bound. From the bearing bending restraint
equation derived earlier (4.21) we have

My = Jp (63, + 6, X [Jp T3] + Myry X (6.47)
using the notation of Figure 6.3 and lettihgdenote inertia of the platform with respect to its own cm. Using the
center of mass definition it is found that

rp=(Mmg/mjfry —rq]. (6.48)

Since we are interested in the static aases ws =0, andw, = ws. Also bothry, r, are fixed in a basis of either
body while the two bodies are again at relative pfigsé’hen denote

rp = €(M/M)[X, = X; COSPBy, = X4 SINPp, 2, = 23], (6.49)
while
Fp= %[0, xr,]. (6.50)

Thus, the spin axis componentMf, is

M3 = (B, = HDwio, + Fp(wh — @) + 30005 — Baoo g (6.51)

+ My (Mg/M){X1(Z5 = Z1) W03 + Xp(Xz — X1 COSP)wWy W, + X1X, SN Bp((*)% + 00%)} .

Of course the rates here are in general very complex functions of the mass properties and presumably this will
reduce to the previous boungd With sufficient effort. Of significant interest is the simple dynamically balanced and
symmetric inertia case where the vehicle is allspun about an axis near the bearing axis. Then the recovery torque
bound simplifies to

M3 = mp(my/m)eosx; X, Sinp,, . (6.52)
Similarly, in flat spin we reason from Figure 6.3 that the primary rate wilk,band the bound is

M3 = mp(my/m)usbx; X, SinB,, . (6.53)
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6.5 Separation Dynamics

Consider two bodys initially joined as a single rigid body that are separated by an internal force acting
between them. Given mass properties, the separating force F(t), and initial linear and angular velocities v, Q, we
wish to calculate linear and angular velocities of the separated bodies. Figure 6.4a depicts problem geometry and
defines various position and rate vectors.

Immediately following initiation of the separation when the interbody constraints are released and the internal
force begins to act, body a has angular momentum

Hy= J.[ro + 11+ X1 + U] X[Fg+ 1+ Xq + Ug]dmy

=myfry+ g+ Xq] X[Fo+ g+ Xq] +Ju1><uldml (6.54)

=myro+ 1+ X X[fo+T1+X]+ Iy 0y,

Body a

\ U,
J2 my

—
=

Inerti alor/0
Point

/,/' u, 3. m,

Body b

Figure 6.4a Two Body Separation Geometry.
and differentiating

Ha: I[ro + I+ X+ U] X[Fo+ 11+ X + Uq]dmy

=myfro+rq+ X X[fo+T1+X]+ J uq X U,dmy (6.55)

=myfro+r1 + X X[fo+T1 + %] +Jq- 05+ @, [J5- @] .
The moment on body ais

Ma=T[ro+ri+Xs +YIxXF=mqlro+ry+ X x[Fo+F1+X]+y, xF. (6.56)
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Equating (6.55) and (6.56), the body a moment equation becomes

Ja [60;, + @, X [Ja [t0] =y xF (6.57)

whereF is given and at time zem, = Q is given. Of course there may be multiple forces (torques) that sum on the
right side of (6.57). Initial linear velocity is

Vi=fg+rfy=fg+Qxrg. (6.58)
Acceleration after release is
X, = F/my (6.59)
which results in linear velocity
Vi +Av; =1, +Qxry +J'5idt. (6.60)

The solution of (6.57) and (6.59) is the sought result for body a. An entirely parallel set of equations describe
motion of body b. However, such a separation is usually executed by Fethag spring between the two bodies.

In general this yield& as a function of the position of both bodies. Since the force is integfal=n+m,X, and

X, =X =—(1+my/my)x,. Thus, the internal spring force will be a function of the body position difference and
both body rates (orientations), i.B.= F(x;, w,, ). As a result, for the general case one must integrate 9 dynamic
equations simultaneously to obtain w,, w,. These equations are (6.57), (6.59), and the counterpart to (6.57) for
body b.

Expanding (6.57) for a dynamically balanced body in body fixed vectordyagises

0 B0 + (B — B)wws — Fgboy + By [ (100 + (B3 — B)uwpasO
elg Bt = (Bz — w10 — Balos — fi‘s(*)% g* 95%2002 - (Bs- ‘]Gill)wlﬂ)sgz y1 XF. (6.61)
[P35 + (B — H) w6, + F005 — Bty s [FBais + (B — Fw

We shall solve the simple case for a spinning b@d{0) = ws, where the separation force is impulsive, and where
the bodies are axis symmetric, i.85 3 J;1 = Jr. Denote the force and moment impulses respectively as

I Fdt = Ft = el 1[Fy, Fp, F3]" (6.62)
and
J’y1 xFdt=Tt =€l T[Ty, To, T4l . (6.63)
The 3-axis equation from (6.61) integrates to spin rate of the separated body a as
ws = Q3(0) + TT4/E; . (6.64)
Then the body a nutation frequency becomes
Aa = (BalJr = L)oo = (02 — L)ows . (6.65)

Integrating the transverse axis equations from (6.61) yields final body a angular rates
tT/ B + Q4(0)] cosh,t — [TTo/ B + Q,(0)] sinA tO

w, =€l ngz/ﬁ +Q,(0)] COSA,t — [T,/ B + Q;(0)] sin)\atg. (6.66)
0 Ws 0
Simultaneously the velocity of body a mass center becomes
Vi +Avy =1, + Qxrq + (T/my)F (6.67)

and solutions similar to (6.66) and (6.67) hold for the opposite body. The velocity of a point on body a logated at
with respect to its cm has velocity

Va=Vy HAV) + @ Xy, =g+ Qxry + (T/IM)F + @, xy,, (6.68)

and the position change of this point
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t
Ay,(t) = J v,dt . (6.69)
0
Observe that if F imparts no torque the angular rates remain unaltered by separation. However, the nutation angle
excursion may change due to a different nutation frequency for the separated body. Letting ¢ and 6 represent inertia
ratio and nutation angle for the initial stack and o, 6, similarly for separated body a, the relation

tan6,/tan® = /G, = 6,/0 , (6.70)

the latter for small angles, holds for a torque free separation. It may also be shown that the attitude of the separated
body shifts by an amount equal to the nutation change in arandom direction from the attitude of the original body.

Separation Clearance Reduction due to One Body Dynamic Imbalance

Here we consider the first-order effect of a dynamic imbalance B; on body a. Assume a spinning axial sepa-
ration and that the launch vehicle, body b, has perfect control imparting a perfect spin w3 = wg about the 3-axis of
the geometric coordinate basis. Note another case that we do not solve at present is when the launch vehicle exerts
no control. To accomplish the former the launch vehicle will have to apply a constant body fixed torque T; = B0,
see Eq. 6.61, which will force the momentum vector to cone in space. The coning angle can be found as
6! = Bs/[B; + Bs] and at the instant of release, body a has pure spin about its 3-axis and momentum vector at cone
angle 6, = B3/%;. Hence the principal axis is displaced from the geometric axis by 0,, = B3/[%; — %], and from
the momentum vector, which isfixed in inertial space after separation, by initial nutation angle

o> + ((52 - 1):| _ {GW/GZ , 0> 1

. 6.71
(o} GW(2(52 - 1)/(52 , 02 < 1 ( )

Onh =0y £ 6= \];213/[\]%3 - fz‘z] * 333/\23 = {\]‘2’3/[33 - 32]}|:
At the instant of release body a will have angular rate purely about spin and a step torque —E;0? as a result of
removal of the b body canceling control torque. Hence, using 5.67, 68

0,005 SIN At 0o SINALt — 6,005 SN WGt
0, = — €] 0,041 — cosAd] | = — | =0, COSAt + 6,05 COS L | . (6.72)
o s

Principal Axis

o<1; J23>O

Figure 6.4b Spin and Momentum Vector Geometry at Separation.
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Consider the velocity of a point on body a at

r=el[ry, I, r3]" = €' [ry coswt — 1y sinwt, 1y SinGt + 1, COSWt, ] (6.73)
which is
B, — B, A, COSALO  Frowd 1 —cosAgtd  Frows[
Avy = @, Xt = elr% =B\, SINAGL B+ e;grloos g: e;r3ewoosg —sin\gt g+ e;grlws g (6.74)
O 0 o o0 o 0 o 00 g

06,0 SinAGt — B, Sinwst O [y COSWst — Iy SiNwst
=- TE—GH)\O COSA,t + 8,00 cosmstgx e Sl sinwgt + 1, cosmstg

0 Ws o o I3 0
@A, COSAt — 6,05 oSt O~ rq Sinwst — 1, coswstO
= e,Trg,Ebn)\o sinAot — 8,0 Sinwst B+ e,TwSE r; COSWt — Iy Sinwgt E
0 Va3 0 O 0 O
Further manipulating, far > 1,
[COSA,t — coswetl [ ryws SiNwgt — 105 COSwst]
= e,Tr3eWooSE§in)\ot - sinwgt B+ QTS 1005 COSWE — o0 SINGst E
O V3 0O O 0 O
In the last for@e velocitv is separated into the component due to normal spin (second component) and perturba-
tions induced by wobble utation. Both body a and b are rotating at the same rate, so it is the relative transverse
velocity perturbation that is if interest in a separation clearance analysis. Integrating the perturbation
O —[sSin\ot]/Ao + [sinwt)/ews O O  —[sinAqtl/o + [sinwdt] O
dy(t) = qTrgeWmsgl — COSAGt]/A, — [1 - coscost]/(osg= QTr36WEZSin2()\Ot/2)]/0 - [Zsinz(cost/Z)]g. (6.75)
0O d O O d O

In general the motion is complex and must simply be evaluated over time, dut 1f],]As is small the following
approximations obtain,

[1 = cosAyt)/A, = ul)s [1 = AJw{[1 — coswt] — [cosA,t — coswit]}

= is [1 - AJo{[1 — coswd] + 2[sinA2)][Sin(\, + wo)t/2]}

= Ql)s{[l — coswgt] + 2[sin(Ast/2)][sin(A, + w)t/2]}
[SINAt)/A, = (is{[sin wdt] + 2[sin(Agt/2)][cos, + w)t/2]} ,

and the distance is periodic near spin speed with magnitude increasing relatively slowly comparable to half body
nutation period as

[Fcos[(\, + wy)t/2]0 Fcogut[]
di(t) = QT2r36Wsin()\st/2)Bsin[()\o + Wt2] gz qTerewsin()\st/Z)Bsinwst B. (6.76)
0 d O 0d% O

If, as usually the case, axial clearance occurs in somedtismeall compared to body nutation period, the transverse
clearance loss may then be bounded by

0y (81) = 138, At = 130,,(0 — 1)t = r3[By/Blwdt ; St < 21 . (6.77)
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There is wobble because body a is dynamically unbalanced and nutation because its initial spin induced by the separation mechanism is about the geometric axis rather than the principal axis.


6.6 Static Stability and Propellant Migration

As employed here the term static stability refers to stability of the principal axes of inertia with respect to the
desired equilibrium spin axis (bearing axis). In a completely rigid body the principal axes are of course fixed to the
body. In aflexible body, or a system of bodies with relative motion permitted, the system principal axis orientation
will depend on the relative position of the elements. Specifically a rigid body with movable propellant mass and
desired principal axis in some nominal geometric orientation with propellant nominally distributed may be stable or
otherwise under small imbal ance perturbations of the rigid body.

In References 12,13 and 26, the subject of static stability is treated in theory and some specific examples of
vehicle geometry are examined. For present purposes, consider a vehicle having four propellant tanks at some frac-
tion fill and a perfectly balanced spinning section (rotor or entire vehicle as applicable to discussion of a particular
orbit condition). With the propellant frozen in the perfectly balance equilibrium about the desired spin axis, the spin
to transverse inertia ratio is denoted by o. If a small rotor dynamic imbalance 8l is introduced, it produces a princi-
pal axis shift

g =ol{lt(c - 1)} . (6.78)

The vehicle will then spin about the new principal axis and the nominal spin axis will cone about it in the spin fre-
quency motion commonly termed waobble. If the propellant is then unfrozen it will seek a new equilibrium by repo-
sitioning within individual tanks and, if unconstrained, by migrating between banks. At this equilibrium the princi-
pal axisis displaced from the nominal spin axis by

e =0l{I[(c — Ky/lt) — 1]} = o (6.79)
where
o=U[1-K/{lr(c—-1)}]. (6.80)

a. is the wobble amplification factor and K, is a parameter dependent upon tank geometry and location, propellant
density and fraction fill, and total vehicle mass. The spacecraft is said to be statically stable if for arbitrary €, there
existsadl (or g) such that the resultant principal axistilt islessthan e. The amplification factor o is plotted qualita-
tively as Figure 6.5. Here it is observed that oo < 1 (attenuation) for o < 1, and o > 1 (amplification) for
6 >1+K/ly. Intheregion (1, 1 + K/I1) the principal axisis unstable, i.e., for small 61 propellant will redistribute
to produce a large principal axis shift. The equation given for o contains implicit small angle assumptions, so it is
not valid in thisregion. Clearly in the on station configuration when ¢ < 1 the effect is beneficial.

V(L + K i)

NI+ K/t
<—— Stable—>,
Unstable

\ [< Stable >

Figure 6.5 Wobble Amplification Factor versus Rigid Body Inertia Ratio.
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Propellant Imbalance Amplification on a Sngle Body Spinning Spacecraft

The derivation herein applies to a single body spinner or to a dual-spin spacecraft with the platform (body not
having propellant tanks) despun, by replacing transverse inertias J with total vehicle transverse inertia. In Ref. 26
some discussions and derivations are given regarding a dual-spin vehicle with both bodies spinning.

Tank Geometry and Propellant Equilibrium Location

For even the simplest tank shapes, location of the free surface and center of mass can be very complex. We
treat the spherical or equivalent tanks for which the equilibrium free surface is a cylinder about the true spin axis
(nearly always the case for any tank shape) and the center of mass is on a radia line in the spin plane passing
through the geometric center of the sphere. Several aspects and symbol definitions of this geometry are shown on
Figure 6.6.

a) In Plane Product and Tilt; 6 > 1

¢) Out of Plane Product and Tilt d) In Plane Product and Propellant Migration

Figure 6.6 Principal Axis of Inertia Repositioning Due to Propellant Tilt and Migration.
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Let the body basis be, and assume a principal axis basis, eaydisplaced by imbalance tilt angleg ¢,
such that

& = Ax(e2)Ax(Er)es - (6.81)
A vector to some tank center of geometric symmetry is
re=egry = el Ax(E2)Ar(E)r = (X1, X, Xa] (6.82)
so that
ry = el[Xq, Xp, 0]" (6.83)

is a radial vector in the spin plane passing through the tank center of symmetry, and therefore normal to the fluid free
surface. Then

u = ry/lre] (6.84)

is a unit vector normal to the free surface passing through tank center of symmetry. This vector can be used to
establish a new "free surface normal” vector basigith a convenient orientation to the tank geometry such that cm
location and the inertia matrix of propellant in a partially filled tank can be readily computed. For a sphere, or coni-
sphere with sufficient faction fill to be regarded as a sphere, this vector passes through the spherical propellant seg-
ment mass center. Mass properties for these geometries are given in Appendix K. Even in this almost trivial case
we shall approximate the free surface as planar and norraglao approximation that improves as the distance of

the tank from the spin axis gets large compared to tank radius.

We letJ; = el Je, denote the rigid body inertia dyadic of the spinning spacecraft with propellant frozen in its
equilibrium position about the balanced spin axis where the 3-axis is the spin axis. Introduction of rigid products of
inertia in orthogonal planes containing the spin axis results in approximate imbalance wobble angles (solving for
rotation angles to null products of inertia in the matrices of Appendix E)

&1 = +(12)Tan {2334/[35, — Bal} = + Bo/[Ba(1 ~ BgfBo)] = + B/[37(1 - 07)] (6.852)

9 = - (U2)Tanm {2313 - Bal} = - Bo/F(1 - B/B)] = - B/ (1 - o) (6.85b)

Propellant Repositioning Within Tanks

Introducing principal axis tile; about the 1-axis and carrying out the formality of locating the resulting pro-
pellant symmetry vector, we get

re=el[o, r, z]" =elA(e)[0, r, z]" = €l[0, 1, + z&q, z — 1i&4]" (6.86)
giving
r =el[0, r +zgq, 0" (6.87)
and
u =€l[0, 1, 0] . (6.88)

As was clear by inspection, since the tilt rotation axis is normal to the tank radial line in this case the propellant line
of symmetry is just the 2-axis of the tilted principal axis system. Hence we need only rotate the propellant inertia
back through the tilt angle to determine the perturbed ineréa in

Values for propellant cm and free surface location with respect to the tank gertemd propellant inertias,
;&fj as a function of tank fill fraction are given in Appendix K. The inertia computed with respect to spacecraft mass
center for fuel in one tank rotated by angil@bout the tank center and having cm located at

My =Ty + lo =Tt + e-SrAT(sl)[Oi lo O]T = e'sl'{[O, Yo Z’[]T + I’0[0! COsEq, Sinsl]T} ’ (689)

as depicted on Figure 6.6a is computed as
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3i(rr, 1) = el {A T(en) JA(e) — mufr i bes = el{A T (e) FA(er) — milf; + [AT(eDr] IR + AT e

03, -J,,cose; + J5sing; -J,;cose; — J,sing; 0
=el[| = Fo+ I -dlsinfe +dsinZ; - - - - - - - - - = -
0 - ~dscos2; —[(Jhs— )2l sinZ;  Jy— [Jog — Dol sin®e; — basinZ,

[y + I, COSE;)? + (z; + I, SiNg)? 0 0 O
+ elmfg 0 (z + rosing;)? —(y; + o, COSEL)(Z; + I SINES) %S
0 0 =(Yt * 1o COSEL)(2; + Ip SiNEY) (y; + 1o COSEL)?
|:(yt + ro)2 + (Zt + r081)2 0 0 O
= el AT(e)JA(er)es + elmy 0 (z+ o) (Ve * o) * Tofr) - (6.90)
O 0 =(Yt +1o)(z + ro€1) e + r0)2 O
For reference the untilted inertia is
0 + my[zf + (v + 1o)°] -3, ~Ji3 0
3(0) = e[ - mififles = el e Tot izt he-maz o) & (6.91)
0 %5 ~Ba =Mz + 1) Fg+ My + 1) O
The resultant change in rotor inertia, assuming 3 j, due to the propellant tilt is
0Js(rs,, €1) = Ji(rs,, €1) = J5(0) = (6.92a)
(RPmziro€q 0 0 O
= elg 0 2Mkzio€g ~{[355 = Dol + Me(yy + ro)lo} €1 %s )
o O ~{[3%s — Lol + Mi(y: + ro)ro}es 0 0
and for the companion tank on the negative 2-axis
8Js(r'r,, €1) = Ii(ry,, €1) = J(0) = (6.92b)
-2mzir o€y 0 0 O
~elg 0 ~2MZioE; {195 = ol + My + ro)ro}er &
o O {1355 = ol + me(y: + ro)ro}en 0 0
Then summing the inertia perturbations
Js(€1) = Is(0) + 2.8Js(r1,, €1) = I5(0) + BIs(ry,, €1) + 8Is(rr,, €1) - (6.93)
I

The true amplified principal axis tilt angte may be found by solving this implicit equation, e.g., sedgeind eval-
uate J(g;), then compute the principal axis tilt of this matrix, and iterate until the selected value and the computed
values match. However an approximate value is obtained as follows

835 = ko1 = 2{[J55 = Bl + Mu(yy + ro)o} €1 — 2My(Y + o)1 3 % — O, (6.94a)
and
& = +(1/2)Tan{2354/[33, — Bal} = Ba/[F3(1 — Ba/B,)] (6.94b)

_ B3+ 053 _ B3 + kpes
[B3(1-02)] B(1-07)
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Bs Bs

= = = g%

BA(L-0) —ky/B]  Bll-0p-80,]
807 = kp/Bp = 2{[35s — Fol + Me(y: + ro)la}1/Bp — 2Mi(Ys + Fo)lo€r/ By (6.94c)

1 1
a= N ) 6.94d
& 2murn (6:849)
B(1-07) Bo(1-0y)
For a tilt about the 2-axis induced by rigid product of ineian& derive in analogous fashion
e = el[O, Yozl = e-grAz(sz)[O, Yozl = e:Sr[—ztsz, Yo z]" (6.95)
leading to

re = el[-zez, yi, 0" (6.96)

and the propellant symmetry vector

[-z&5, Y1, O
o= S22 0O L Gyyges 1, 07, (6.97)
VY? + (z£2)?
which indicates that the propellant free surface badsrotated by small anghe; = — (z/y,)e, about the 3-axis of
e;. To express the perturbed propellant inertigsive must first rotate propellant cm and inertia parameteasd
J throughv; about the 3-axis, and then byabout the 2-axis as

J1(V3, €2) = el{A T(e2)AT(V3)JA(V3)A(E3) — Mfifi]} & (6.98)

= el{A T(e2)AT(v3)JA(V3)A(gs) — My[Fi + [AT(e2)AT(Va)ro] 1Ii + [AT(E)AT(Va)ro] . }es
Forming the vehicle cm to propellant cm vector for this case

Fp=ro+ro =1+ el AT(E)AT(v4)[0, 1o, O] (6.99)
= e;—{[oa yt1 Z(]T + r.O[_COSEZ SinV3, COSV31 SInEZ Slnv3]T} = el[_roVSa Yt + r01 ZI]T}

= el[ro(z/Y)es Ve + 1o, 2]} -
The propellant inertia becomes
Ay + 1o)* + 2 —ToZi€2 —To(z/y)z:€, O
Ji(Vs,€5) = el AT(e)AT(Va) JA(V)A(ER)es + elmyD  —Tozie, o htn B (6.100)
OTo@Y)zE ~(i+r)z  (i+1)° 0O

Again taking two symmetrically positioned tanks and expanding only terms pertaining jo-th@ limit, the total
perturbation is

Js(V3, &2) = J5(0) + 8Js(V3, €2) + 8Js(-V3, €2) (6.101)
O 0 0 -ro(zlyze, O
= J,(0) + +e§2mfg 0 0 0
T ro(zdy)zie, O 0 O
In addition the shifted propellant induces a small vehicle mass center shift as
6cm = (mf/m)rov3 == (mf/m)ro(zt/yt)82 (6-102)

resulting in a reduction of the tilt induced product by
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33 = — my(mi/m)(rolyy) Z€, (6.103)

and producing a residual product for two tanks
8% 3 = ko€ = 2me(1 — mi/m)(ro/yy) Z€ (6.104a)
& = = (U2)Tan{235:/[3; - Bal} = - R/[I51(1 - Bl F)] = - Bof[351(1 - 01)] (6.104b)

_ -J3 - 8% _ =Ji3 + KpE2
Ji(l-o0) Hi(1-0y)

- e - i3 = (el
Ji[(1 = 01) —kp/dy] - Jy[1 - 0y~ 80y]
307 = Kyl Fy = 2my(1 — me/m)(roly)ze1%, (6.104c)
1 1
o= = _ 6.104d
R amA - mimwZ (61049
Ji(1-0y) Ji(1-0y)

Migration of Propellant Between Tanks
Forming the position vector to the respective free surfaces in the tiltedehasis

rfa = e-sr[oa Vit X~ 6cmv Zt]T = e:srAZ(SZ)Al(El)[Ov Yi +Xa — 6cma Zt]T (6-105b)
= eg[_ZtSZu Vit Xa— ch + 78,z - (yt +Xa~ 6cm)sllT
rf = el[0, =¥t = Xo — 8cm, 21" = €[ Ax(e2)A1(e1)I0, —Yi = Xp — Bem, 2] - (6.105b)

= e:sr[_ZtEZa Yt~ Xp ~ 6cm t2:€, 4 + (yt T Xp 6cm)£1]T

The mass transfer is

dm = mp(r? - x2)dx , (6.106)
with accompanying vehicle cm shift
Bem = 2(BM/M)(y; + Xo) = (2/m)MP(r? — X2)BX(Y; + Xo) - (6.107)
Equating spin plane components of distance to the free surface from (6.101) yields
(Xp — X2)/2 = OX = &1 — O = &1 — (2/M)TP(r? — X2)dX(Y; + Xo) (6.108)
so that solving fodx yields
ox = aal
1+ (2Im)mp(r2 = xZ)(Yr + Xo)
while
_ o(r* = X3)Z:€1
™ T @M - xRy %) (6.109)
and finally
5 - @mp(? - xR + Xo)zEs (6.110)

T L+ Immp(Z - XE)Wr + X)
The product of inertia induced by propellant migration is
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2mp(” ~ XV X)ZEL
1+ @mmp(2 - x3)yi +%)
Observe that migration does not alter the moments of inertia. Solving for the principal axis tilt amplified by migra-
tion

3B = 20m(y; + Xo)z = (6.111a)

&1 =+ (1/2)Tan {2334/[35, — Bal} = Bo/[35,(1 — Ba/B,)] = Bo/[F(1 - 02)] (6.111b)

_ BatdBs | Batkets
[B(1-02)]  [3a(1-07)]

Bs Bs

T 0 - kfB)] B0 -dop)]
e 2 =R+ X
%02 =k = F T+ mont — @) ) A
a= ;k . (6.111d)
_ p
Y30y

Summary of Propellant Wobble Amplification Effect

For a pair of two spherical tanks located on a diameter of the spacecraft the total wobble amplification effect
due to both migration and repositioning of propellant can be summarized by collecting the results of (6.93, 99, and
107) as follows.

Amplification In Tank Plane

2mp(r? - x5) (¥t + %o)Z

—orf _ T
Ko = 203 = Joal + 2M e+ o)lo + 1 ey + %) (6.112a)
2mp(r* = x§) (Vi * Xo)ZF
R w e Ty A e B
0 0 k
€ = +}Tan"lm 52‘:53 0= — %3 =~ Ba Ttk (6.112b)
2 D[Jzz - %4 0 [33.(1 - BBl [FF(1-02)] B(1-0y)
- ‘]33 — ‘23 - — 0
TBAA-0) B Bll-o; b0 T
1
30, = kol B, = kplE, s a = T, ~ 0] (6.112c)
Amplification Normal to Tank Plane
Ko = 2(1 — me/m)my(roly,)z2 (6.113a)
0 a - - - Kk
E=— = Tan_l[i 52\23 0= — J:SL?’ = = Jig = 3?'3 M p2 (6113b)
2 |:|[‘]11 - Xl 0 [0,(1 - B/l [P(1-oy)]  J,(1-09)
— _Jﬁs _ —Ji3 _ — 0
B CRCARTH A R A R
30, = k/Bi1 = kplFy ;5 @ ! (6.113c)

T I kLA - o)
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6.7 Mass Property Perturbation Dueto Propellant Repositioning Under Vehicle Acceleration
Under axial acceleration the propellant in partially filled tanks will shift to alter the vehicle mass properties. A
simple case of spherical tanksisillustrated on Figure 6.7.

tane = (F/m)/[(y, + rocose)w?] = (Fm)/[(y; + ro)os] = (Fim)/[y,n2]

Figure 6.7 Propellant Mass Shift Induced by Axia Acceleration.

In the simple spherical tank case the propellant mass and cm rotate about the tank center through an angle whose
tangent is the ratio of axial acceleration F/m to centrifugal acceleration of the spin field given as

tane; = (F/m)/[(y; + I, cosey)®?] = (FIm)/[(y; + ro)w?] . (6.114)

The inertia matrix expansion given for a single tank in (6.90) is adequate for calculating the change in inertia
induced by propellant tilt. Note that the tilt angle is not necessarily small so the full expansion is retained.

8Js(rs,, €1) = 8J¢(ry,, €1) = I(rs,, €1) — Jr(0) (6.115)
0 —le(COSf-:l — 1) + Jl3 S.ngl —J13(COS€1 — 1) — le S.ngl
=el| -- [Jss — Jo] SinPeg + 3sin2e; - — — — - — — — — — — €s
——  —Jpg(cos2e; — 1) — [(Jgs — J2)/2] Sin2e; [Tz — Jo] SiNP g — 3 Sin2ey
2yiro(cose; — 1) + r3(cos’e; — 1) + (22 + ro Singy)ro Singy 0 0
+elm 0 (22 + roSingy)rosine; —[zro(cose; — 1) + yifoSingy + r2sing; cosey] fes -
0 —[ziro(cosey — 1) + YirgSingy + r2sing; cose,] 2yiro(cose; — 1) + r2(cos’e; — 1)

The total inertia perturbation due to two diagonally located tanks as depicted in Figure 6.7, omitting products of
inertiawhich will vanish, is
5\]5 = 5Jf(rf1, 81) + SJf(rfz, - 81) (6116)

8311 = 2my[2y,ro(cose; — 1) + r3(cos’e; — 1) + (27, + o Siney)r, Sing] = 4myro[y(cose; — 1) + z sing,]
83 = 2[Jg3 — Jp] Sin* ey + 2Me[(22, + ro Siney)o Singy] = 2[Jgs — Jpp] SiN* ey + 4MyTozy Singy

853 =~ 2[Jz3 — Jpo] Sin® £ + 2my[2yyro(Cose — 1) + rg(Cos’es — 1)] = — 2[Jzg — o] Sin® 1 + Amyroy;(cose; — 1) .
The self inertias, J;, are also typically small and the effect is of most interest when inertiaratio ¢ = 1, leading to the
following approximate relations
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_ 0% Js O _ B 3 ~AMifolzisine]

0o, = = = (6.117a)
T W W I
30, = 0k3  Ji3 0% - O3 o, 0%z - —4myro[z, sing; — y(cog; — 1)] . (6.117b)
b2 o b L b2 b2
The cm shift depicted on Figure 6.7 is
Ocm = — 2(my/m)r, sing;
Denote the initial mass center 3-axis station as
Zem = 2.(Mi/m)z
|
then the change in transverse inertia due to the cm migration is
O = Z[(Zi ~Zem t 6cm)2 G Zcm)z]mi = Om Z[Z(Zi = Zem) + Oem]M; (6.118)
1 I

= 8%, 3 My = M2, = A(my/m)my[r, sing;]? << Ampr [z, sing] .
i
Inspection of the inequality in comparison to (6.117) indicates that the cm shift term is generally negligible.

6.8 Propellant Transport

When propellant is expended it is frequently transported to a different spin radius before expulsion through a
thruster. In this transport the vehicle (including propellant) spin inertia is altered, inducing a change in spin speed.
An expression for the combined thruster torque impulse imparted while mass and inertia are changing due to mass
expulsion and transport of propellant to the point of expulsion is, considering the spin axis component only

- % = 3500 + l5at = Fricy (6.119)

where [, a; are radial moment arm and alignment angle of the thruster. Approxinigfiag constant which covers
many practical cases, a time invariant linear differential equation results giving transform

[133 + 1355]00s = 133005(0) + Fria;/s (6.120)

Ts

1 O

W) . Frojflss _ w(0) _ 0
[s + I33/la3]

[s+la3flas]  S[S+ I33/l33] - [s + 133/l 53]

|
W = +Frj0(]-/|33[f -
iy
whose solution is
wy(t) = w(0)€ 199! + Frafiggl — t5919] (6.121)
y(t) — 05(0) = 8, = — [wy(0) = Frioy/igg][1 — €'9"] = —[wy(0) — Frjo/lgg]ltisa/l5a] -
Then expressing mass flow rate and the inertia derivative as

dm _d OFt0_OF O

gl 0= 0 (6.122)
dt ~ dt bl hlseg
t = [glsy/F][m¢ — m;] =[glsy/F]om (6.123)
d|33 o dm _ F
r (7 =13 o (7 = 13) ol (6.124)

In this expression mny are initial and final propellant mass on board assumed equal (or average) at ragigs of r

i‘_s the _radius of pro_pellant expulsiony inj rj is thruster_ spin torque, angsJlz3 = J33 + mfr,ZJ are vehicle spin iner-

tias without and with propellant respectively. The spin rate change can be expressed in terms of mass change and
independent of time as
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= —[w(0) - Ffﬂﬂhs]WE = [x(0) = glsph o/ (rf = r)1dM(Y = 17133

=~ wy(0)3M(IF = r5)/133 + Glsh; & 8M/l35 = = W(0)M(1F = r5)/135 + Frioyt/l 53 . (6.125)
Another approximate approach for integration of (6.119) follows by eliminating the time variable below. Write
. . dm d dm
| 33005 + 133005 = (17 = 17) ot + (Jg3 + mrd) (T(*t)s = Fro; = gl o (6.126)
then rearrange and integrate as
do dm
= (6.127)
oy(rf —13) — glsfjo  Jz3+mr3
Oy - 9lsph0j
| O (F-)0_ (r—r) (g5 + myr5 0
n = In 3 D
0o - 2% g B getmig
0O (-0
yielding finally
E]J33 + myr? el -2 B
By = — @ = [0 = glea/(F = Iy 51 -10 (6.128)
myss ¥ Mif g 0
O

O
) -1
W e

=[w - glg pI‘JC(/(I‘ rp)]%m —15

0
U-6m (r2 I’p)
= [ = glspho/(r? —rp)]Dli dmrd/lzs < 1
33

= = WdM(* = r3)/l33 = gdMIgyr; &/l 33 = = WOM(KF = r5)/l33 + T3dt/l35 .
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