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Simple Astrodynamics for Spacecraft Attitude Control Engineers

1.0 Classical Keplerian Orbital Element Definitions

The position over time of body in orbit about a central body is described by six independent variables such as
position and velocity x(t ), ẋ(t ) at a given time. There are numerous equivalent sets. What is known as the classical
orbital elements (a, e, i, Ω, ω, M) relate conveniently to the inertial orientation and geometric shape of the orbit.
These are defined by;

a = semimajor axis = (rp + ra)/2 = rpra/p = p/ (1 − e2)

e = eccentricity = (ra − rp)/(ra + rp) = 1 − rp/a = ra/a − 1

i = inclination

Ω = longitude of ascending node

ω = argument of perigee

M = (2π/P)(t - T) = mean anomaly

Rather than M, we shall deal with true anomaly v, which is equivalent to M through eccentric anomaly E and Ke-
plers Equation, i.e.,

M = E − esinE (1.1)

sinE = [√  1 − e2sinv] / [1 + ecosv]; cosE = [cosv + e] / [1 + ecosv] (1.2a)

tanv = [√  1 − e2sinE] / [cosE − e] (1.2b)

Figures l.1, reconstructed from Ref. 1, show the orbital elements. Inclination and eccentricity are frequently treated
as vectors directed from the central body to the ascending node and perigee respectively with the conventional defi-
nitions

i = eT
i i[cosΩ, sin Ω, 0]T = eT

o i[1, 0, 0]T , (1.3)

and

e = eT
o e[cosω, sin ω, 0]T = eT

1 e[1, 0, 0]T , (1.4)

where the vector bases ei, eo, and e1 are specifically described below.
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2.0 Coordinate Definitions

Orthogonal Vector Bases and Rotation Matrices

In this section we describe the vector notation used in this document and define a number of standard vector
bases. We shall attempt to consistently use these throughout the following sections. We denote a gibbsian vector
basis ’a’ by the symbol ea and, in the style of Likens, a vector having scalar components v = [v1, v2, v3]T is written

v = eT
a v = eT

a [v1, v2, v3]T . (2.1)

The following rotation matrices define the symbols Ai( )  and are correct for transformation of vector scalar
components from an initial coordinate system, say ea to a second system eb displaced by a positive right handed rota-
tion about the i-axis.

A1(ξ1) =





1

0

0

0

cos ξ1

− sin ξ1

0

sin ξ1

cos ξ1






; A2(ξ2) =





cos ξ2

0

sin ξ2

0

1

0

− sin ξ2

0

cos ξ2






; A3(ξ3) =





cos ξ3

− sin ξ3

0

sin ξ3

cos ξ3

0

0

0

1






. (2.2)

Hence we write

eb = Ai(ξi)ea ; eT
b = [Ai(ξi)ea]T = eT

a Ai(ξi)
T = eT

a Ai(ξi)
−1 = eT

a Ai(−ξi) ,  (2.3)

and transform the components of v from ea to eb as

v = eT
a v = [Ai(ξi)eb]Tv = eT

b Ai(ξi)
Tv = eT

b Ai(ξi)
−1v = eT

b Ai(−ξi)v . (2.4)

With these conventions coordinate system accounting and transformation becomes a simple application of the
recipe.

2.1 Inertial - Heliocentric and Earth Centered Inertial

First let eh denote an inertial ecliptic (heliocentric) vector basis with 3-axis North and normal to the ecliptic,
1-axis directed from the Sun toward Aries, i.e., Earth to Sun at the vernal equinox. We denote the obliquity of the
ecliptic as φh = −23. 44384o and the Earth-centered-inertial (ECI) basis ei is

ei = A1(φh)eh . (2.5)

2.2 Earth Fixed - Equatorial

An earth fixed basis ee with 3-axis north is defined as

ee = A3(θg(t ))ei = A3(Ωet − λ)ei (2.6a)

where θg(t ), the sidereal time, is the right ascension of the Greenwich meridian from Aries.

Earth Fixed - Local Horizontal

Denote east longitude and north latitude of the local point by λ, γ respectively. Then a local horizontal basis
with 1-axis vertical, 3-axis local horizontal north, and is determined as

elh = A2(−γ)A3(λ)ee = A2(−γ)A3(λ + θg(t ))ei . (2.6b)

2.3 Orbit Coordinates 1

Next, an orbital basis for an earth orbiting body, eo is defined with 3-axis North and 1-axis earth directed from
the perigee of the orbit. This basis is sequentially rotated through longitude of the ascending node Ω, inclination i,
and argument of perigee ω, respectively about the 3, 1, and 3-axes from ei as

eo = A3(ω)A1(i)A3(Ω)ei . (2.7)

Finally, a vector basis e1 with 3-axis North and 1-axis directed from the orbiting body to the earth is defined using
the true anomaly angle, v, as

e1 = A3(v)eo = A3(v)A3(ω)A1(i)A3(Ω)ei = A3(v)A3(ω)A1(i)A3(Ω)AT
3 (θg(t ))ee (2.8a)

=





cos(v + ω) cos(Ω − θg) − sin(v + ω) cos i sin(Ω − θg)

− sin(v + ω) cos(Ω − θg) − cos(v + ω) cos i sin(Ω − θg)

sin i sin(Ω − θg)

cos(v + ω) sin(Ω − θg) + sin(v + ω) cos i cos(Ω − θg)

− sin(v + ω) sin(Ω − θg) + cos(v + ω) cos i cos(Ω − θg)

− sin i cos(Ω − θg)

sin(v + ω) sin i

cos(v + ω) sin i

cos i






ee .
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For geosynchronous orbits, ω = 0, v = Ωet = θg − Ω, and

e1 → A3(Ωet)A1(i)AT
3 (Ωet)ee (2.8b)

=





cos(Ωet) cos(Ωet) + sin(Ωet) cos i sin(Ωet)

− sin(Ωet) cos(Ωet) + cos(Ωet) cos i sin(Ωet)

− sin i sin(Ωet)

−cos(Ωet) sin(Ωet) + sin(Ωet) cos i cos(Ωet)

sin(Ωet) sin(Ωet) + cos(Ωet) cos i cos(Ωet)

− sin i cos(Ωet)

sin(Ωet) sin i

cos(Ωet) sin i

cos i






ee

=





1 − sin2(Ωet)(1 − cos i)

− sin(Ωet) cos(Ωet)(1 − cos i)

− sin i sin(Ωet)

− sin(Ωet) cos(Ωet)(1 − cos i)

1 − cos2(Ωet)(1 − cos i)

− sin i cos(Ωet)

sin(Ωet) sin i

cos(Ωet) sin i

cos i






ee .

2.4 Right Ascension/Declination

This system is frequently used to locate inertial directions such as stars or the direction of the spin axis of a
spin stabilized spacecraft. α and δ are the right ascension and declination angles respectively and

ec = A2(δ)A3(α)ei ; Equatorial (2.9a)

eĉ = A2(δ)A3(α)eh ; Ecliptic . (2.9b)

2.5 Spacecraft Attitude Coordinates (Body Fixed Basis)

Spacecraft attitude is typically expressed by the orientation of a body fixed basis eb with respect to a nominal
or desired attitude. The orbital basis e1 is a good starting reference, having 1-axis directed from earth center to the
orbiting spacecraft and 3-axis North. Let ea denote the nominal attitude basis. For many Hughes commercial space-
craft of the spin stabilized vintage, a nominal attitude basis with 3-axis North, 1-axis along the orbit velocity and
2-axis completing the right-handed triad directed from the spacecraft toward earth given by

ea = A3(−90o)e1 = Ase1 =





0

1

0

−1

0

0

0

0

1






e1 . (2.10)

For body-stabilized spacecraft the industry standard is 1-axis (roll) along the velocity vector, 2-axis (pitch) anti orbit
normal (South), and 3-axis (yaw) earth directed, which has heritage with aircraft attitude coordinates. Then

ea = A1(−90o)e1A3(90o)e1 = Abe1 =





0

0

−1

1

0

0

0

−1

0






e1 . (2.11)

This represents nominal attitude and is coincident with a body fixed basis eb in the absence of attitude displace-
ments. Then we represent true attitude by a sequential displacement about yaw, φ3, pitch, φ2, and roll, φ1 about the
3, 2, and 1-axes, as

eb = Aa(φ1, φ2, φ3)ea = A1(φ1)A2(φ2)A3(φ3)ea =





1

0

0

0

cos φ1

−sinφ1

0

sin φ1

cos φ1











cos φ2

0

sin φ2

0

1

0

− sin φ2

0

cos φ2











cos φ3

− sin φ3

0

sin φ3

cos φ3

0

0

0

1






ea

=





cos φ2

sin φ1 sin φ2

cos φ1 sin φ2

0

cos φ1

−sinφ1

− sin φ2

sin φ1 cos φ2

cos φ1 cos φ2











cos φ3

− sin φ3

0

sin φ3

cos φ3

0

0

0

1






ea (2.12)

=





cos φ2 cos φ3

sin φ1 sin φ2 cos φ3 − cos φ1 sin φ3

cos φ1 sin φ2 cos φ3 + sin φ1 sin φ3

cos φ2 sin φ3

sin φ1 sin φ2 sin φ3 + cos φ1 cos φ3

cos φ1 sin φ2 sin φ3 − sin φ1 cos φ3

− sin φ2

sin φ1 cos φ2

cos φ1 cos φ2






ea

≈





1

0

φ2

0

1

−φ1

−φ2

φ1

1











cos φ3

− sin φ3

0

sin φ3

cos φ3

0

0

0

1






ea ≈





1

−φ3

φ2

φ3

1

−φ1

−φ2

φ1

1






ea .
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2.6 Tr ansformation From Geosynchronous Inclined to Geostationary Orbital Coordinates

Using ei the ECI basis with 1-axis at Aries and 3-axis North, an orbital basis with 1-axis anti-nadir and 3-axis
North is obtained as

e1 = A3(v)A3(ω)A1(i)A3(Ω)ei , (2.13)

and for an ideal geostationary orbit a like basis denoted êg is obtained as

êg = A3(vg)A3(ω)A1(i)A3(Ω)ei = A3(vg)A3(0)A1(0)A3(0)ei = A3(vg)ei . (2.14)

Hence an inclined orbit basis is related to the ideal geostationary basis as

e1 = A3(v)A3(ω)A1(i)A3(Ω)AT
3 (vg)êg . (2.15)

For the geosynchronous case we can take ω = 0, and choose a phase in the true anomaly such that v = Ω − vg = Ωet.
Then using 2.8a from the Sect 2.3, this evaluates to

e1 = Aêg =





1 − sin2(Ωet)(1 − cos i)

− sin(Ωet) cos(Ωet)(1 − cos i)

− sin i sin(Ωet)

− sin(Ωet) cos(Ωet)(1 − cos i)

1 − cos2(Ωet)(1 − cos i)

− sin i cos(Ωet)

sin(Ωet) sin i

cos(Ωet) sin i

cos i






êg . (2.16)

A simple sketch of the coordinates systems described above will show that êg is not in the standard roll-pitch-yaw
orientation we have described for eb and eg, but rather

e2 = Abe1 = A1(−90o)A3(90o)e1 =





1

0

0

0

0

1

0

−1

0











0

−1

0

1

0

0

0

0

1






e1 =





0

0

−1

1

0

0

0

−1

0






e1 (2.17)

and likewise

eg = Abêg (2.18)

which leads finally to

e2 = AbAAT
b eg = Ceg =






1 − cos2(Ωet)(1 − cos i)

sin i cos(Ωet)

sin(Ωet) cos(Ωet)(1 − cos i)

− cos(Ωet) sin i

cos i

sin(Ωet) sin i

sin(Ωet) cos(Ωet)(1 − cos i)

− sin i sin(Ωet)

1 − sin2(Ωet)(1 − cos i)






eg (2.19)

where Ωet = t = 0 at the ascending node.

2.7 Equatorial Normal Yaw Steering Function

In some cases yaw steering to equatorial normal is desired. Then the body basis is displaced from the orbital
basis as

eb = A3(φ3)e2 = A3(φ3)Ceg . (2.20)

Taking ub as a body pitch unit vector, the yaw steering angle can be found by requiring the equatorial plane compo-
nent of this to vanish in eg. Accordingly,

ub = eT
b [0, 1, 0]T = eT

g CTAT
3 (φ3)[0, 1, 0]T , (2.21)

and

ub ⋅ eT
g [1, 0, 0]T = −sin φ3[1 − cos2(Ωet)(1 − cos i)] + cos φ3[sini cos(Ωet)] = a(t )sinφ3 + b(t )cosφ3 = 0 .  (2.22)

Solving, the ideal yaw steering profile is

φ3(t ) = Tan−1{b(t )/a(t )} ≈ icos(Ωet) ; i small. (2.23)

1 Though rotation matrices are useful for analytical studies, a vector based computational alternative is some-

times better for numerical studies. To rotate the scalar components ro in basis eo of r = eT
o ro = eT

n rn, to the

components rn in the new basis, assume two orthogonal vectors x and z with components known in eo and

known to lie along two coordinate axes in en are available or can be constructed. Then create orthogonal unit

vectors in the new basis as ux = x/|x|, uz = z/|z|, and uy = uz × ux. Then in the new system

r = eT
n [ux ⋅ r, uy ⋅ r, uz ⋅ r]T

, noting the u are the rows of the direction cosine matrix.
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2.8 Tr ansformation From Right Ascension-Declination to Local Horizontal Azimuth-Elevation

We wish to express a unit vector u expressed in right ascension-declination coordinates in terms of azimuth
(Az) and elevation (El) in local horizontal coordinates Earth fixed coordinates at longitude λ and latitude γ. Az-
imuth is the angle from north in the horizontal plane (about the 1-axis) and elevation is the rotation about the 2-axis,
such that the 3-axis of elh is directed to the target. Let θg be sideral time and a unit vector directed to a target at right
ascension α and declination δ be

u = eT
c [1, 0, 0]T = eT

i AT
3 (α)AT

2 (δ)[1, 0, 0]T = eT
lhA2(−γ)AT

3 (α − λ − θg(t ))AT
2 (δ)[1, 0, 0]T (2.24)

= eT
lh






cos γcos(α − λ − θg(t ))cosδ − sin γ sin δ
sin(α − λ − θg(t ))sinδ

−sinγcos(α − λ − θg(t ))cosδ − cos γ sin δ






= eT
lhAT

1 (Az)AT
2 (El)






0

0

1






= eT
lh






sinEl

−sinAzcosEl

cosAzcosEl






= eT
lh






u1

u2

u3






.

Then elevation and azimuth are found as

sinEl = u1 ; cosEl = √  u2
2 + u2

3 (2.25)

sinAz = u2/√  u2
2 + u2

3 ; cosAz = u3/√  u2
2 + u2

3 .

2.9 Tr ansformation From Orbit Position and Velocity, r and v, to Classical Orbital Elements

The construction of classical orbital elements from position and velocity vectors uses vector basis definitions
from Sect. 2.0 and draws some from the presentation of Ref.11 page 61, though we use 21st century vector mathe-
matics. The satellite position r and velocity v vectors are with respect to an inertial geocentric-equatorial basis such
as ei having 1-axis toward Aries and 3-axis north. Let een be an equatorial basis with 3-axis north and 1-axis aligned
with the line of nodes directed toward the ascending node. Then

een = A3(Ω)ei =





cos Ω
− sin Ω

0

sin Ω
cos Ω

0

0

0

1






ei . (2.26a)

and an intermediate orbit plane normal basis also having 1-axis at the ascending node is

eon = A1(i)een =





1

0

0

0

cos i

− sin i

0

sin i

cos i






een . (2.26b)

Define r and v in the equatorial inertial basis as

r = eT
i [r1, r2, r3]T; v = eT

i [v1, v2, v3]T , (2.27)

and resultant momentum

h = r × v = eT
i [h1, h2, h3]T = eT

en[h1 cos Ω + h2 sin Ω, h2 cos Ω − h1 sin Ω, h3]T = eT
en[h1, h2, h3]T (2.28)

= eT
on[h1 cos Ω + h2 sin Ω, (h2 cos Ω − h1 sin Ω)cosi + h3sini, h3cosi − (h2 cos Ω − h1 sin Ω)sini]

= eT
on[h1, h2cosi + h3sini, h3cosi − h2sini]T = eT

on[0, 0, h]T .

Noting that both r and v lie in the orbit plane, the fundamental assumption to developing classical elements form po-
sition and velocity is that momentum h is perpendicular to the orbit plane.

Semi-major Axis, a

The semi-major parameter, and eccentricity are adopted directly from Ref. 3, pg 20-26.

p = h2/µ = a(1 − e2) ,  (2.29)

also noting ra = p/ (1 − e); rp = p/ (1 + e).

Orbit Eccentricity, e 3

e = v × h/µ − r/|r| =
1

µ







v2 −

µ

r




r − (r ⋅ v)v



; e = |e| .  (2.30)
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Longitude of Ascending Node, Ω
The angle in the equatorial plane from Aries to the ascending node, Ω, is found by equating the 1-axis compo-

nent on momentum in the orbit plane to zero as follows

0 = h1 = h1 cos Ω + h2 sin Ω =>
h1 cos Ω

√  h2
1 + h2

2

+
h2 sin Ω

√  h2
1 + h2

2

= sinA cos Ω + cosA sin Ω = sin(A + Ω) = 0 => A = −Ω (2.31a)

whence

sin Ω = −h1/√  h2
1 + h2

2; cos Ω = h2/√  h2
1 + h2

2 . (2.31b)

Orbit Inclination, i

This found by equating the 2-axis component of momentum in the orbit plane to zero, using functions of Ω
from (6b)

0 = h2cosi + h3sini = (h2 cos Ω − h1 sin Ω)cosi + h3sini = √  h2
1 + h2

2cosi + h3sini = 0 (2.32a)

=> √  h2
1 + h2

2cosi

h
+

h3sini

h
= sinAcosi + cosAsini = sin(A + i) = 0 => A = −i (2.32b)

whence

sini = −√  h2
1 + h2

2/h; cosi = h3/h . (2.32c)

Argument of Perigee, ω
The unit vector directed to the ascending node is n = eT

en[1, 0, 0]T = eT
i [cos Ω, sin Ω, 0]T, and argument of

perigee is the angle between n and e, as

cos ω = [n ⋅ e]/e =
−(e1h2 − e2h1)

e√  h2
1 + h2

2

. (2.33)

True Anomaly, ν
True anomaly is the angle between perigee at the vector e and r, thus

cos ν = [e ⋅ r]/e|r| .  (2.34)

2.10 Tr ansformation From Classical Orbital Elements to Orbit r and v

An orbital coordinate basis with 3-axis north and 1-axis directed from Earth center to perigee is denoted eo

and related to the Earth fixed equatorial inertial system ei as

eo = A3(ω)A1(i)A3(Ω)ei => eT
o = eT

i AT
3 (Ω)AT

1 (i)AT
3 (ω) .  (2.35)

Instantaneous orbit radius r = |r| is obtained as

r = p/ (1 + ecosν) = [a(1 − e2)] / (1 + ecosν) .  (2.36a)

Then

r = eT
o r[cos ν, sin ν, 0]T = eT

i AT
3 (Ω)AT

1 (i)AT
3 (ω)r [cos ν, sin ν, 0]T . (2.36b)

The radial and tangential components of satellite orbital velocity given by Ref. 2, Eq. 3.3 and 3.4 are

VR = √  µ/p(esinν); VT = √  µ/p(1 + ecosν) (2.37a)

while sequentially in the perigee directed orbital basis eo and the inertial geocentric-equatorial basis ei,

v = eT
o [VR cos ν − VT sin ν, VR sin ν + VT cos ν, 0]T (2.37b)

= eT
i AT

3 (Ω)AT
1 (i)AT

3 (ω)[VR cos ν − VT sin ν, VR sin ν + VT cos ν, 0]T .

1 x = eT
i [1, 0, 0]T; y = eT

i [0, 1, 0]T; z = eT
i [0, 0, 1]T

and h = r × v; n = z × h/|h|; where h is orbit nor-

mal, n points to ascending node, and e points to perigee with magnitude equal to eccentricity, all independent of satellite

position in time around the orbit in the Kepler model. If e = 0 set e = n, or is equirotial orbit set e = x.
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Figure 2.1 Earth-Sun Seasonal Geometry on the Ecliptic Plane.
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3.0 Orbit Change Obtained From an Arbitrary Velocity Impulse

We wish to apply an impulsive velocity increment with direction, magnitude, and time or true anomaly of ap-
plication arbitrary and obtain the new orbital elements. The two body solution of this problem is derived below.

3.1 In Plane ∆V

First the in plane velocity increments are treated. From Ref. 1, Eqs 3.73, 27, 264, and 265

p = a(1 − e2) = rpra/a; a = (rp + ra)/2 (3.1)

r = p/ (1 + ecosv); e = 1 − rp/a = ra/a − 1 (3.2)

ṙ = √  µ/p(esinv) = VR (3.3)

rv̇ = √  µ/p(1 + ecosv) = VT (3.4)

where p is the semimajor parameter, r is instantaneous orbit radius, and ṙ, rv̇, are respectively velocity components
parallel and normal to r in the orbit plane. The Earth gravitational constant squared
µ = β2re = [250. 50(nm)3/2/sec]2 = [631. 35(km)3/2/sec]2. A nautical mile is 6076.11 ft(1.8520 km)4. Substituting p
from (3.2) into (3.3) and (3.4), squaring, and rearranging the resultant two equations, and solving for e and v gives
the result

e2 = ξ2 + rṙ2/µξ + rṙ2/µ = ξ2 + rV2
R/µξ + rV2

R/µ (3.5)

v = sgn(ṙ)Cos−1(ξ/e) (3.6)
where

ξ = (r ̇v)2r/ µ − 1 = (VT)2r/ µ − 1 .  (3.7)

Hence, given orbital elements a, e, and v, these can be used in (3.1) through (3.4) to get radial and normal in plane
velocity increment components. These values are then altered by the in plane velocity components and used in (3.5)
through (3.7) to compute new values of e and v. Eqs. 3.1 and 3.2 then give a for the new orbit. At this point we
have three new orbit elements e, v, and a. The period of the orbit is given as P = 2πa3/2/√  µ = 2πa3/2/[β√  re].

Next we calculate the effect on parameters i, Ω, ω. Let ei denote an inertial basis and eo an orbit plane basis
with 1-axis at perigee and 3-axis normal to the orbit plane. We use sub o to denote the above elements before the
velocity increment is added. Then

eo = A3(ωo)A1(io)A3(Ωo)ei =





cos ωo

− sin ωo

0

sin ωo

cos ωo

0

0

0

1











1

0

0

0

cosio
−sinio

0

sinio
cosio






A3(Ωo)ei . (3.8)

Let e1 be a basis with 3-axis along the 3-axis of eo and 1-axis directed to the orbiting body. Then

e1 = A3(vo)eo = A3(vo)A3(ωo)A1(io)A3(Ωo)ei . (3.9)

Now let e2 be the orbit plane basis for the new orbit, i.e., same as eo for the old orbit. Thus,

e2 = A3(−v)e1 = A3(−v)A3(vo)A3(ωo)A1(io)A3(Ωo)ei (3.10)

= A3(ωo + vo − v)A1(io)A3(Ωo)ei = A3(ω)A1(i)A3(Ω)ei .

Evaluating the last two forms in (3.10) yields a new argument of perigee of

ω = ωo − (v − vo) ,  (3.11)

while longitude of the ascending node and inclination are unchanged.

3.1.1 Small In Plane Velocity Impulses

For a circular orbit e = ξ = 0 and the radial and tangential velocity at every point are respectively VR = 0 and

VT = √  µ/p = √  µ/a = √ µ/r. Then, using (3.5), for a radial velocity impulse δVR,

3 For general reference, re = 3441. 7 nm = 6373. 9 km, and geosynchronous orbit radius is

ro = 22, 766. 85 nmi = 42, 164. 17 km. Some interesting velocities: Point on surface of Earth,

vg = 903. 5 nm/hr, satellite in circular orbit at Earth surface, voe = 15, 357. 5 nm/hr = 17vg, satellite

in geostatonary orbit, vog = 5, 972. 9 nm/hr, ∆V = 4, 884. 2 nm/hr to raise circular Earth radius apogee

to geostationary. Earth escape velocity v∞ = 11. 2 km/sec = 21, 770. 8 nm/hr; Sun escape velocity

7. 9 km/sec = 15, 356 nm/hr. For the moon: µm = [70. 02(km)3/2/sec]2
.
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δe2 = (r /µ)ṙ2 = (r /µ)δV2
R = [δVR/VT]2

and
v = sgn(ṙ)Cos−1(0) = 90osgn(δVR) ,

so the true anomaly at the maneuver location becomes ±90o, the radius p at this point does not change, and by (3.4)
we observe that the radial maneuver both raises apogee and lowers perigee.

For a tangential maneuver δVT in the circular orbit case, noting that ξ = 0 => (r/ µ) = 1/V2
T, and expanding

(VT + δVT)2 in (3.7) gives

δe = δξ ≈ 2δVTVT(r /µ) = 2δVT/VT

and

v = Cos−1[sgn(δVT)] =




0o ; δVT > 0

180o ; δVT < 0

hence, this velocity increment either raises an apogee or lowers a perigee on the opposite side of the orbit. The re-
spective circular orbit geometry effects are pictured on Figure 3.1.

Figure 3.1  Influence of Tangential and Radial Velocity Impulse on Orbit.

∆VT ∆VR = ∆VT
VT

∆e

∆e/2
EarthEarth

For the general case
ξ = ξo + δξ = {VT + δVT}2ro/µ − 1 ≈ ξo + 2δVTVTro/µ

e2 = [ξo + δξ]2 + {r [VR + δVR]2/µ}[ξo + δξ] + {r [VR + δVR]2/µ}

≈ ξ2
o + {rV2

R/µ}ξo + {rV2
R/µ} + 2δξξo + {2rδVRVR/µ}ξo + {rV2

R/µ}δξ + {2rδVRVR/µ}

≈ e2
o + 2δξξo + {2rδVRVR/µ}ξo + {rV2

R/µ}δξ + {2rδVRVR/µ} .

≈




e2
o + 2δξξo + {rV2

R/µ}δξ ; δVR = 0

e2
o + {2rδVRVR/µ}ξo + {2rδVRVR/µ} ; δVT = 0

.

3.1.2 Circular Orbit Raising Velocity Increments

An initial circular orbit of radius ro is assumed. Then we determine the velocity impulse required to raise
apogee by ∆r and one half orbit later to raise perigee by ∆r to obtain a new circular orbit of radius r + ∆r. The three
orbits of the sequence are depicted on Figure 3.2. Initial velocity is (using the vis-viva equation from Ref. 1)

V1 = β√  µ(re/ro) (3.12)

where β = 25936 ft/sec, µ ≈ 1, and re = 3441. 7 nm is earth radius. Velocity on the new elliptical orbit at perigee is
given as

V2 = V1√  2[1 − 1/(2 + ∆r/ro)] ≈ V1[1 + ∆r/ 4ro] => ∆r =
ro[(V2/V1)2 − 1]

[1 − (V2/V1)2/2]
≈ 4ro[V2/V1 − 1] . (3.13)

This and subsequent approximations are for ∆r << ro. Velocity at apogee on the elliptical orbit is
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V3 = V1√  2/(1 + ∆r/ro) − 1/(1 + ∆r/ 2ro) ≈ V1[1 − 3∆r/ 4ro] ,  (3.14)

while circular orbit velocity at radius ro + ∆r is

V4 = V1√  1/(1 + ∆r/ro) ≈ V1[1 − ∆r/ 2ro] .  (3.15)

The resultant velocity increments are

∆V1 = V2 − V1 = V1{√  2[1 − 1/(2 + ∆r/ro)] − 1} ≈ V1∆r/ 4ro (3.16a)

∆V2 = V4 − V3 = V1{√  1/(1 + ∆r/ro) − √  2/(1 + ∆r/ro) − 1/(1 + ∆r/ 2ro)} ≈ ∆V1 . (3.16b)

Orbit period is given by

P = 2πa3/2/[K√  µ] , (3.17)

where K = 1. 5016 × 104(nm)3/2/min, and a is the semi-major axis(respectively ro, ro + ∆r/ 2, and ro + ∆r).

Earth

Figure 3.2  In Plane Circular Orbit Raising Geometry.

ro

ro + ∆r
∆V1

∆V2

3.2 Out of Plane ∆V

Assume first that for arbitrary ∆V the in plane component has been used as detailed above to determine a new
intermediate orbit due to its effect. Figure 3.3. shows the effect of the out of plane velocity increment. Note that
since the velocity change is impulsive, r cannot change and it must lie in both the old and the new orbit planes. From
the geometry of Figure 3.3. It is deduced that the radial normal velocity component is rotated through angle

tan ξ = ∆V/r ̇v (3.18)

where rv̇ is the radial normal velocity component after accounting for the in plane velocity change discussed in the
preceding section. In addition, the normal component is lengthened from rv̇ to [(r ̇v) + ∆V2]. This will alter parame-
ters a, e, and v. Computation of the effect can be combined with the in plane effect above, but one must use the inter-
mediate rv̇ in (3.18).

It remains only to calculate the effect of ξ on parameters i, ω, Ω. Translating from the inertial basis ei to the
final orbit plane basis, denoted e2,

e2 = A3(−v)A1(ξ)A3(v)A3(ω′)A1(io)A3(Ωo)ei (3.19)

= A3(−v)A1(ξ)A3(v + ω′)A1(io)A3(Ωo)ei = A3(ω)A1(i)A3(Ω)ei ,

where v is the final value of true anomaly and ω′ is the intermediate argument of perigee obtained by taking into
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ξ
2

Figure 3.3  Geometry Showing Addition of Out of Plane ∆V.

V + ∆V
∆V

e1

3

1r r

rv
V

account the original in plane ∆V and the radial normal velocity augmentation due to the out of plane ∆V. Equating
three of the matrix elements from opposite sides of (3.19)

b33 = cos ξ cos io − sin ξ sin iocos(v + ω′) = cos i (3.20)

b23 = sin io[sinvsin(v + ω′) + cos ξ cos vcos(v + ω′)] + cosvcosio sin ξ = sinicosω (3.21)

b32 = sin ξ[sinΩosin(v + ω′) − cos io cos Ωocos(v + ω′)] − cos Ωosinio cos ξ = −sinicosΩ . (3.22)

Here bij denote elements of the matrix coefficients of (3.19). We solve respectively for i, ω, and Ω from the above
three equations.

3.3 Circular Orbit Station Change Maneuvers(Rendezvous5)

A satellite A is assumed in geostationary orbit while requiring a station change to an alternate station longi-
tude. The situation is depicted on Figure 3.4 where the desired orbital longitude station is indicated by S1. In the ab-
sence of a maneuver both A and S have period Po = (2π)/Ωo. One approach is to increase the period of A to
PA = Po + ∆θ/Ωo by application of a positive tangential velocity ∆V. As A proceeds through the subsequent orbit,
the station longitude S moves through 2π + ∆θ to meet A, at which point the negative velocity increment is intro-
duced to synchronize with longitude S. Alternately, time to station can be traded off with ∆V magnitude by allowing
multiple orbits to reach the station. To gain some quantitative insight, consider ∆θ = 30o, applied to a geostationary
orbit with Pe = 2π/Ωe ≈ 24 hrs, for which we must add ≈ 2 hours to the drift over n orbits. Solving P = 2πa3/2/√  µ ,
where a = (2ro + ∆r) / 2,

∆r = 2[PA√  µ/2π]2/3 − 2ro = 2{[Pe + (∆θ/Ωe)/n]√  µ/2π}2/3 − 2ro = 2495. 8 nm .

A1, A2

S2

∆V

Figure 3.4.  Circular Orbit Station Change Scenario with Elliptical Drift.

ro

Ωe

S1 −∆V

∆r

∆θ

P
e

Then from Eq.3.13 above, using V1 = 10080. 9 ft/sec, and noting that an equal velocity increment is required to

4 Rendezvous of an active approach satellite with a passive target satellite is equivalent to the station change

of the active satellite to a new station in the same orbit or a new orbit. Both are just the transition of the ap-

proach satellite at a given time and true anomaly in a new orbit.
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recircularize at the end of the drift period, we get 2∆V = 517. 2 ft/sec. This is quite a large number, of order several
years of typical north-south stationkeeping velocity increment. If correct, one might like to take sev eral days in the
station change, e.g. one day added to the station change gains a year of operational time! Exploring quantitively

Drift Time(∆θ = 30o) =







1(Pe + 2/1)

2(Pe + 2/2)

3(Pe + 2/3)

(n/Ωe)[2π + ∆θ/n]







hrs => ∆r =







2495. 8

1256. 2

839. 4

− − −







nm => 2∆V =







517. 2

268. 9

181. 6

− − −







ft /sec .

Finally, for a 1o station change in 24 hrs and 4 min, we get ∆r = 84. 3 nm and 2∆V = 18. 6 ft/sec.

In the example the satellite A is ahead of the target longitude station. A parallel scenario applies by lowering
a perigee in orbit A and drifting in the opposite direction if A is behind S1. Also similar developments for any circu-
lar orbit. For significant drifts a Hohmann transfer to a new circular orbit might be traded against the above for time
to station and propellant impulse purposes. Station changes in elliptical orbits appear more complex. In any initial
orbit raising station acquisition scenario requirements for both should be considered and integrated into a mission
plan.

An alternate approach is to circularize the drift orbit with two velocity impulses as illustrated on Figure 3.5,
using a minimum of two orbits to effect the station change. For the two orbit case the apogee raising increment ∆r is
solved from

2[P1/2 + P2/2] = 2[Pe + ∆θ/(2Ωe)] =
2π
√  µ

[(ro + ∆r/ 2)3/2 + (ro + ∆r)3/2] .

After solving this for ∆r, the first apogee raising ∆V1 and subsequent perigee raising to circularize ∆V2 velocity in-
crements come form Eq. 3.16a and b as ∆V2 and ∆V3.

A1, A2

S2

∆V
1

Figure 3.5.  Circular Orbit Station Change Scenario with Elliptical-Circular Drift.
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−∆V
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(b) 2P
1
/2 + P

2
/2 = (3/2)2π/Ωe + ∆θ/Ωe 

Following through with the ∆θ = 30o example above, we get ∆r = 836. 8 nm with ∆V1 = 90. 6 ft/sec,
∆V2 = 89. 8 ft/sec and interm orbit periods of P1 and P2 1475. 8 min and 1516. 0 min respectively. Hence, for the
two orbit 30o station change the total velocity change is 2[∆V1 + ∆V2] = 360. 8 ft/sec. At about 30% larger, this
does not compare favorably with the two elliptical orbit change requiring 268. 9 ft/sec above. For a two circular or-
bit 1o station change we get 12 ft /sec, comparable to the total impulse above with a two elliptical orbit period station
change.

3.4 Orbit Intersections, Constellations, and Collisions

Orbit intersection points are of frequent interest. For near impulsive orbit changes the change is made at the
intersection of two orbits, usually required at a specific location and time. Rendezvous are another example. A con-
stellation of satellites will generally involve multiple orbit intersection points. A popular constellation geometry, the
Walker Constellation6, is characterized by n equal radius circular orbit planes with m equally spaced satellites and
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results in n(n-1) orbit intersection points. Also collisions, or avoiding them, involves intersection of two orbits.

The instantaneous radius to a satellite is expressed, Eq. 2.36b repeated here for convenience, in Earth centered
inertial basis ei with classical Keplerian elements, r the instantaneous orbit radius magnitude and ν true anomaly as

r = eT
o r[cos ν, sin ν, 0]T = eT

i AT
3 (Ω)AT

1 (i)AT
3 (ω)r [cos ν, sin ν, 0]T . (2.36b)

Expanding

r = eT
i r






cos Ω
sin Ω

0

− sin Ω
cos Ω

0

0

0

1











1

0

0

0

cos i

sin i

0

− sin i

cos i











cos ω
sin ω

0

− sin ω
cos ω

0

0

0

1











cos ν
sin ν

0






= eT
i r






cos Ωcos(ω +  ν) − sin Ω cos isin(ω +  ν)
sin Ω cos(ω +  ν) + cos Ω cos isin(ω +  ν)

sin isin(ω +  ν)






. (3.23)

The radius can be written r = p/ (1 + e cos ν) with p the semimajor parameter 2rarp/(ra + rp).

Consider two satellites in circular orbits of equal radius and longitude of ascending nodes Ω1, Ω2, and for
e = 0, choose ω = 0. Equating the two radii in the last form of 3.23

r[cos Ω1 cos ν1 − sin Ω1 cos i1 sin ν1] = r[cos Ω2 cos ν2 − sin Ω2 cos i2 sin ν2] (3.24a)

r[sin Ω1 cos ν1 + cos Ω1 cos i1 sin ν1] = r[sin Ω2 cos ν2 + cos Ω2 cos i2 sin ν2] (3.24b)

r sin i1 sin ν1 = r sin i2 sin ν2 . (3.24c)

Let

cos A1 =
cos Ω1

√  sin2 Ω1 cos2 i1 + cos2 Ω1

=
cos Ω1

D1

; sin A1 =
sin Ω1 cos i1

D1

‘

cos B1 =
sin Ω1

√  cos2 Ω1 cos2 i1 + sin2 Ω1

=
sin Ω1

E1

; sin B1 =
cos Ω1 cos i1

E1

‘

and similarly define A2, D2, B2, E2, all of the upper case quantities known, such that 3.24a, b becomes

D1[cos A1 cos ν1 − sin A1 sin ν1] = D1 cos(A1 + ν1) = D2 cos(A2 + ν2) (3.25a)

E1[cos B1 cos ν1 + sin B1 sin ν1] = E1 cos(B1 − ν1) = E2 cos(B2 − ν2) (3.25b)

ν1 = Cos−1{(D2/D1)cos(A2 + ν2)} − A1 (3.26a)

ν1 = −Cos−1{(E2/E1)cos(B2 − ν2)} + B1 (3.26b)

subtracting, the orbit #2 true anomaly at the intersection is the solution of

f(ν2) = Cos−1{(D2/D1)cos(A2 + ν2)} + Cos−1{(E2/E1)cos(B2 − ν2)} − (A1 + B1) = 0 ,

and from 3.24c
sin ν1 = (sini2/sini1)sinν2 = sin {Cos−1{(D2/D1)cos(A2 + ν2)} − A1}

This transcendental equation is some effort, involving tedious resolving square root sign, and trigonometric function
angle ambiguities to match a solution. Hence, we save it and move on to the later recognized vector solution follow-
ing. Further, this applies to the limited case of circular orbits only.

Orbit Intersection - Another Approach

Consider the orbit momentum vector h = r × v, a vector normal to the orbit plane at all times. The cross prod-
uct of momentum vectors of two orbits defines a vector normal to both, hence, in both orbit planes along unit vector
u. For equal radius r circular orbits, known to intersect, that intersection must be along unit vector u as

r = |r|
h1 × h2

|h1 × h2|
= |r|

(r1 × v1) × (r2 × v2)

|(r1 × v1) × (r2 × v2)|
= |r|u . (3.27)

For more general orbits the common radius of intersection must still be found. As the direction of h is constant in
time, any r and v suffices to compute u, but for general orbits r1(t ) = r2(t ) must be found.

5 J. G. Walker, Satellite Constellations," Journal of the British Interplanetary Society, vol 37, pp. 559-572,

1984.
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Expanding from Ref. 2, Eq. 3.36 and 2.37

h = r × v = eT
o






r cos ν
r sin ν

0






× eT
o






VR cos ν − VT sin ν
VR sin ν + VT cos ν

0






= rVTeT
o






0

0

1






= √  µa(1 − e2)eT
o






0

0

1






. (3.28)

This basis, eo, is the basis of the applicable orbit, so transforming to the inertial frame ei for two respective orbits
with the rotations of Eq. 1 above

u =
h1 × h2

|h1 × h2|
= eT

i






sin Ω1 sin i1
−cosΩ1 sin i1

cos i1






× eT
i






sin Ω2 sin i2
−cosΩ2 sin i2

cos i2






= eT
i






cos Ω2 sin i2 cos i1 − cos Ω1 sin i1 cos i2
sin Ω2 sin i2 cos i1 − sin Ω1 sin i1 cos i2

sin(Ω2 − Ω1) sin i1 sin i2






. (3.29)

To compute the true anomaly of intersect for orbit #1 of a pair compute

|r1(ν) × u| = |r1(ν)| sin θ (3.30)

with θ = δν =  ν −  νi, where νi is the true anomaly that places r1(νi) at u on the line common to the two orbit planes
where an intresection may occur. Repeating the calculation for orbit #2, its radius must equal that of #1 for an inter-
section. Sometimes there will be intersections in both positive and negative directions along u. Intersections mani-
fest in several varieties:

1) Orbits in the same plane have 0, or 2 intersections and h1 × h2 = 0 so intersections must be found by an-
other means. Perhaps by numerical over the two true anomaly variables to find equal radai. Eq. 3.25 above.
2) Circular orbits pairs in different planes have 0 or 2 intersections, the latter if and only if they are same ra-
dius.
3) General orbit pairs other than 1) above may have 0, 1, or 2 intersections.
4) Real orbit intersection points may migrate or vanish over time with disturbances applied. Thus to search for
rendezvous or collisions it is probably nesessary to perform a time simulation with disturbances models in-
cluded.

Consider further the same plane case of 1) above. We assert without proof that h1 × h2 = 0 requires that
Ω1 = Ω2 = i1 = i2, and all taken zero will not alter the solution. In this case we can both generalize and simplify Eq.
3.24 to

r1(ν1) cos(ω1 + ν1) =




p1

(1 + e1 cos ν1)





cos(ω1 + ν1) = r2(ν2) cos(ω2 + ν2) =




p2

(1 + e2 cos ν2)





cos(ω2 + ν2) (3.31a)

r1(ν1) sin(ω1 + ν1) =




p1

(1 + e1 cos ν1)





sin(ω1 + ν1) = r2(ν2) sin(ω2 + ν2) =




p2

(1 + e2 cos ν2)





sin(ω2 + ν2) .  (3.31b)

We suggest a small value of i2 may yield an initial guess for a numerical solution, still to be confirmed.
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4.0 Transformation From Classical Elements ( i, Ω, ω, T) to Longitude Latitude Coordinates

Let ei be an ECI inertial basis with 1-axis earth-to-sun pointed at the vernal equinox and 3-axis north and let
ea be this basis rotated about the 3-axis such that its 1-axis is at the ascending node. Let e1 be the orbit normal basis
with 1-axis along the orbit radius and 3-axis orbit normal, and finally let e2 be ea rotated in longitude λ and latitude δ
such that e1, e2 have the same local vertical 1-axis and the 3-axis of e2 is north. Both e1, e2 have 2-3 planes local
horizontal. We denote the satellite right ascension as α = Ω + λ. Then the following transformations obtain.

ea = A3(Ω)ei (4.1)

e1 = A3(ω + v)A1(i)ea (4.2)

e2 = A2(−δ)A3(λ)ea . (4.3)

To relate longitude and latitude to classical angles we observe that a unit vector along the l-axis of both e1 and e2 is
identical, i.e., eT

1 [1, 0, 0]T = eT
2 [1, 0, 0]T. Transforming this vector to ea using both (4.2) and (4.3) and equating

terms yields,

sin λ = sin(α − Ω) = sin(ω + v)cosi/cosδ = tan δ/tani (4.4a)

cos λ = cos(α − Ω) = cos(ω + v) /cosδ (4.4b)

sin δ = sin(ω + v)sini . (4.5)

These results are obtained on page 1-5 of Ref. 2. For the singular case of i = 0, δ = 0, and λ = ω + v. Note that λ
here is the satellite longitude with respect to the ascending node rather than the Greenwich meridian. To fix both the
ascending node and the satellite with respect to the earth, the sidereal time θg (angle from Aries to the Greenwich

meridian) must be given. The earth sidereal rate is Ωe = 7. 2921159 × 10−5 rad/sec, and

θg(t ) = θg(T) + Ωe(t − T) , (4.6)

where T is some reference time. In the classical elements T is the time of perigee passage and we must then relate
(t − T) to true anomaly v through Kepler’s Equation (1.1) and the transformation (1.2) from v to eccentric anomaly
E. Thus, given T and t, or v, we can determine the remaining quantity and θg(t ). Then the ascending node and satel-
lite east longitudes with respect to the Greenwich meridian are respectively

Ω′ = Ω − θg(t ) (4.7)

λ′ = Ω + λ − θg(t ) . (4.8)

Next we wish to obtain the azimuth and flight path angles β and γ as defined by Figure 4.1 and Ref. 1 p 140.
The azimuth angle β is simply 90o minus the 1-axis rotational displacement between the e1 and e2 bases described
above. A unit vector along the 2-axis of e1, in the orbit plane and normal to the radius is

u = eT
1 [0, 1, 0]T = eT

2 [0, sin β, cos β]T . (4.9)

Transforming u to ea using the transforms of both (4.2) and (4.3), and equating terms gives azimuth angle as

γ

2

β

2

Figure 4.1  Azimuth Angle β and Flight Path Angle γ.

e1

3

1
r

rv

Local Vertical

e2
North

V

cos β = cos(ω + v)sini/cosδ . (4.10)
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The flight path angle we accept as given in Refs. 1 and 2, i.e.,

tan γ = esinv/ (1 + ecosv) . (4.11)

Here azimuth β is the angle from north to the projection of the orbit velocity on the local horizontal. In Ref. 2 az-
imuth β′ is differently defined as the angle from north to the total velocity vector. It is easily shown using geometry
from Figure 4.1 that

sin β′ = √  sin2 β cos2 γ + sin2 γ , (4.12)

while Ref. 2 relates β′ to inclination and latitude as

sin β′ = cos i/cosδ . (4.13)

5.0 Sidereal Time Computation

Sidereal time is defined as the angle from Aries to the Greenwich meridian, i.e., ee = A3(θg)ei. The rules for
computation of this angle given universal time UT or GMT1 are here extracted from Ref. 1 without derivation. The
desired angle is denoted

θg(t ) = θg(T) + Ωe(t − T) , (5.1)

where

Ωe = [1 + 1/365. 24219879] revolutions/day = 7. 2921159 × 10−5 rad/sec = 15. 0410687o/hour (5.2)

is the earth mean sidereal rate. Given time T = UT = GMT, one must first convert this to the Julian Day JD using Ta-
ble 1.7, p. 19 (from Ref. 1) or equivalent. Because Julian days change at noon an example computation is given.
Consider t = June 19, 1991 at 2:32 pm. The portion of June 19 will be accounted for in (32) using the Ωe term so we
need to obtain JD for T = June 19, 1991. The day 0 number on Table 1.7 is the Julian day at noon of the last day of
the preceding month. Thus, the Julian day at the beginning of June 19, 1991 (0000hrs) is JD = 2448408 + 0.5 + 18 =
2448426.5 days. This is converted to its corresponding fraction of the 20th century by subtracting the 1900 JD and
dividing by the days in a century, i.e.,

Tu = [JD − 2415020. 0]/36525 = 0. 91462012 centuries . (5.3)

Finally, the sidereal time is obtained as

θg(T) = 99. 6909833 + 36000. 7689Tu + 0. 00038708T2
u = 266. 71899o . (5.4)

The sidereal time at 2:32 pm becomes θg(t ) = 266. 71899 + 218. 59686 − 360. = 125. 31585o.

6.0 Tracking Station Satellite Visibility

Here we consider a ground tracking station at longitude λs and latitude δs on the earth surface. The locations
of a number of specific stations are listed below on Table 1. The station location in longitude-latitude coordinates is
written

rs = e
T
e re[cosλs cos δs, sin λs cos δs, sin δs]

T (6.1)

where ee is earth fixed with 3-axis north and l-axis at the Greenwich meridian. The satellite longitude λ′ and latitude
δ have been expressed earlier in terms of sidereal time and the classical orbit parameters. Thus, we denote the satel-
lite position as

ro = e
T
e ro[cosλ′ cos δ, sin λ′ cos δ, sin δ]T (6.2)

= e
T
1 ro[1, 0, 0]T = e

T
i AT

3 (Ω)AT
1 (i)AT

3 (ω)AT
3 (v)ro[1, 0, 0]T = e

T
i AT

3 (Ω)AT
1 (i)AT

3 (ω + v)ro[1, 0, 0]T

= e
T
i ro






cos Ωcos(ω + v) − cos i sin Ωsin(ω + v)

sin Ωcos(ω + v) + cos i cos Ωsin(ω + v)

sin i sin(ω + v)






where we have completed the extra expansion in classical orbital angles for future reference. Now the satellite is
line-of-sight visible when ro − rs, the vector from the ground station to the satellite, is within 90o of the vertical. Let

1 GMT − PST = 8 hrs; GMT − PDT = 7 hrs.
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β denote the angle from the ground station local vertical to ro − rs. Then the visibility constraint is mathematically

0 < cos β = rs ⋅ [ro − rs]/[|rs||ro − rs|] = [rs ⋅ ro − |rs|
2]/[|rs||ro − rs|] (6.3)

= {ro[cosδs cos δcos(λ′ − λs) + sin δs sin δ] − re}/|ro − rs| .

Constraints on the ground antenna may preclude its going all the way down to the horizon and set some lower limit
on β and cos β.

For a circular orbit of radius ro and a ground station in the orbit plane which can see down to angle η above
the horizon, the ground station will have visibility over the orbital arc δv giv en by

cos(∆v/ 2) = (re/ro)cos2η + sin η{1 − [(re/ro)cosη]2}1/2 . (6.4)

While the constraint for line-of-sight visibility is given by (6.3), additional constraints may exist for visibility
of a particular satellite antenna. For example, on a spinning satellite an omni-directional antenna usually has a field
of view that excludes a cone around each end of the spin axis. In this case the antenna is visible from the ground
station when the line-of-sight vector, ro − rs, is sufficiently close to 90o from the spin axis, i.e.,

a > |cosν| = |u ⋅ [ro − rs]| / |ro − rs| (6.5)

where a is some positive limit defining omni antenna beamwidth, u is a unit vector along the spin axis, and (6.3) and
(6.5) must simultaneously hold.
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Table 1. Satellite Tracking Station Locations.

Station Latitude Longitude Altitude
geodetic deg N  deg W ft

Spring Creek, NY 40.65361 73.88917 20.
Fillmore, CA 34.40610 118.89280 1015.
Andover, ME 44.63240 -289.29980 918.
Paumalu, Hawaii 21.67340 -201.96320 508.
Fucino, Italy 41.97580 -13.60110 2182.
Carnarvon, Australia -24.86940 -113.70280 115.
Tangua, Brazil -22.981 -317.21544 116.
Guaratiba, Brazil -22.9981 43.60636 -18.
Zamengoe, Cameroon 3.94390 -11.44580 2696.
Pleumeur Bodou, France 48.78472 -336.48611 253.
Yamaguchi, Japan 34.21292 -131.55953 621.
Allen Park, Canada 44.174 80.94
Edmonton, Canada 53.3 114.1
Lake Cowichen, Canada 48.71 124.07
KSC, Fla. 28.31 80.54
Kourou, F. Guiana 5.2358 52.7747 -16.
Castle Rock, CO 39.2772 104.8069
Hawley, PA 41.2751 75.1300 919.
Glenwood, NJ 41.2 74.5
Jakarta, Indonesia -6.4089 253.0394
Jatiluhur, Indonesia -6.523897 252.5876
Daan Magot, Indonesia -6.45192 253.24634
Langkawi, Malaysia 6.36849 260.18262
Three Peaks, CA
Norfolk SCS, VA 36.56 76.2675 10.
Stockton SCS, CA 37.94166 121.35139 22.
Hawaii SCS 21.52333 157.9975 900.
Guam SCS 13.58149 215.15279 500
Altair, Marshall Is. 9.3975 192.5209 206.
Millstone, MA 42.6174 71.49109 404.
Belrose, Australia -33.7170 208.7884 748.
Perth, Australia -31.8813 244.0602 79.
Ixtapalapa, Mexico 19.3953 99.1612 7447.4
Chilworth, England 50.9667 1.4167
Stanley, Hong Kong 22.1987 245.7832 367.
Tai Po, Hong Kong 22.4530 245.8123 -42.4
White Sands, N. M.(TDRS) 32.37 106.47
Xi Chang, China 28.245 -102.03
Baikonur, Russia 45.6 -63.4
Nittedal, Norway 60.1 -10.8
Hartebeesthock, So Africa
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7.0 Sun Position in an Earth Centered Inertial (ECI) Basis

Let eh be a basis with 1-axis Earth-to-Sun pointed at Aries, 1-2 plane in the ecliptic with 3-axis North. Then,
the earth-to-sun vector in this is system is

s = eT
h A3(−φ)[1, 0, 0]T = eT

h [cosφ, sin φ, 0]T (7.1)

where φ is the mean longitude in the ecliptic of the sun, nominally φ =0 at the vernal equinox (Mar. 21), and is
given by

φ = Ωs[t − to] = (0. 985647o/day)[t − to] = Ωs[t − to] = (1. 99106 × 10−7rad/sec)[t − to] ,  (7.2a)

with t = to at the vernal equinox of 1965. The mean longitude is perturbed by eccentricity of the earth’s orbit about
the sun (e = 0.0167). The perturbation from mean position can be more than 4o and changing at 0. 12o day. The cor-
rection E, known as the equation of time, gives the true longitude as

φ =φ −E (7.2b)

where E has been approximated by Neufeld as

E = −102. 5 sin φ −430. 0 cos φ +596. 4sin2φ (seconds) (7.3)

E = −0. 427 sin φ −1. 79 cos φ +2. 49sin2φ (degrees)

This approximation to E reduces the error in φ to less than ±0. 25o. The ECI system, denoted by ei, has 1-axis earth-
to-sun pointed along the vernal equinox and is rotated φh = βe = −23. 44384o ≈ −23. 5o (obliquity of the ecliptic)
about the 1-axis. Thus,

s = eT
h [1, 0, 0]T = eT

i A1(−23. 5o)A3(−φ)[1, 0, 0]T = eT
i [cosφ, cos(23. 5o)sinφ, sin(23. 5o)sinφ]T (7.4)

= eT
i [cosφ, 0. 917 sin φ, 0. 398 sin φ]T = eT

i [s1, s2, s3]T .

The right ascension and declination of the sun in ei are respectively,

sin αs =
cos(23. 5o) sin φ

√  cos2 φ +cos2(23. 5o) sin2 φ
; cos αs =

cos φ

√  cos2 φ +cos2(23. 5o) sin2 φ
(7.5a)

sin δs = sin(23. 5o) sin φ ; cos δs = √  cos2 φ +cos2(23. 5o) sin2 φ . (7.5b)

The sun vector in ei may then be expressed

s = eT
i [cosαs cos δs, sin αs cos δs, sin δs]

T , (7.6)

and the sun aspect angle λ to any other target vector u with right ascension and declination α, δ is

cos λ = u ⋅ v = cos δcos δscos(α − αs) + sin δsin δs . (7.7)

7.1 Angle From the Orbit Plane

Let u be the earth-to-sun vector having right ascension and declination α, δ in inertial basis ei which is explicit
as

u = eT
i A3(−α)A2(δ)[1, 0, 0]T = eT

i [cosα cos δ, sin α cos δ, sin δ]T . (7.8)

We wish to determine the angle of this vector from an orbit plane described by classical elements Ω and i. In a basis
with 3-axis orbit normal

u = eTA1(i)A3(Ω)A3(−α)A2(δ)[1, 0, 0]T = eTA1(i)A3(Ω − α)A2(δ)[1, 0, 0]T (7.9)

= eT






cos(Ω − α)cosδ
sini sin δ − cos i sin(Ω − α)cosδ
cosi sin δ + sin i sin(Ω − α)cosδ






= eT[u1, u2, u3]T

= eTA1(i)A3(Ω)A1(−23. 5o)A3(−φ)[1, 0, 0]T = eTA1(i)A3(Ω)[cosφ, cos(23. 5o)sinφ, sin(23. 5o)sinφ]T
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= eT






cos Ω cos φ +cos(23. 5o)sinΩ sin φ
[cosi cos Ωcos(23. 5o) + sinisin(23. 5o)]sinφ − [cosi sin Ω]cosφ
−[sini cos Ωcos(23. 5o) − cosisin(23. 5o)]sinφ − [sini sin Ω]cosφ






→ eT






cos φ
cos(i − 23. 5o)sinφ
−sin(i − 23. 5o)sinφ






; Ω → 0

= eT






(1 / 2)[1 − cos(23. 5o)]cos(Ω + φ) + (1 / 2)[1 + cos(23. 5o)]cos(Ω − φ)

−(1 / 2)cosi[1 − cos(23. 5o)]sin(Ω + φ) − (1 / 2)cosi[1 + cos(23. 5o)]sin(Ω − φ) + sinisin(23. 5o)sinφ
−(1 / 2)sini[1 + cos(23. 5o)]sin(Ω + φ) − (1 / 2)sini[1 − cos(23. 5o)]sin(Ω − φ) + cosisin(23. 5o)sinφ






.

The desired angle µ, of u from the orbit plane is

µ = Sin−1[u3] = Tan−1[u3/√  u2
1 + u2

2] .  (7.10)

The last expansion of u shows three frequency components in u3 that might be expected to show up in the sun angle
µ. By some means that has been lost, we have guessed that the sun angle approximates

µ̂(t ) = βesin[Ωst + ψs] + i sin[(Ω̇ − Ωs)t + ψr]

and this yields results quite close to (7.10). Ω̇ is nodal regression rate, and ψs, ψr are phase adjustments.

7.2 Solar Navigation

Normally three dimensional navigation, determination of position with respect to some inertial point, would
require two bodies such as two stars. However, navigation from a point on the Earth’s surface means one coordinate
(elevation) is assumed known and position can be determined by two angles to the sun and knowledge of time. Fol-
lowing the Earth fixed coordinate notation of Eq.2.6 with east longitude and north latitude λ, γ and local horizontal
coordinate basis designation elh,

eT
i = eT

e A3(θg(t )) = eT
lhA2(−γ)A3(λ + θg(t )) (7.11)

so the unit vector from Earth center to the sun may be written in local horizontal coordinates of a point on Earth as

s = eT
lhA2(−γ)A3(λ + θg(t ))[cosαs cos δs, sin αs cos δs, sin δs]

T = eT
lh[s1, s2, s3]T (7.12)

= eT
lh






cos γ
0

−sinγ

0

1

0

sin γ
0

cos γ











cos(λ + θg(t ))

−sin(λ + θg(t ))

0

sin(λ + θg(t ))

cos(λ + θg(t ))

0

0

0

1











cos αs cos δs

sin αs cos δs

sin δs






= eT
lh






cos γ
0

−sinγ

0

1

0

sin γ
0

cos γ











cos δs cos(λ + θg(t ) − αs)

− cos δs sin(λ + θg(t ) − αs)

+ sin δs






= eT
lh






cos γ cos δs cos(λ + θg(t ) − αs) + sin γ sin δs

− cos δs sin(λ + θg(t ) − αs)

− sin γ cos δs cos(λ + θg(t ) − αs) + cos γ sin δs






.

Following the definition of azimuth, Az, and elevation, El of Eq. 2.25

sin El = s1/√  s2
1 + s2

2 + s2
3 = s1; cos El = √  s2

2 + s2
3/√  s2

1 + s2
2 + s2

3 = √  s2
2 + s2

3 (7.13a)

sin Az = s2/√  s2
2 + s2

3 = s2/cosEl; cos Az = s3/√  s2
2 + s2

3 = s3/cosEl . (7.13b)

Given the time of year, epoch, αs and δs are known, Eq. 7.5, and the time of day determines θg. Hence, with mea-
surements of Az and El to the sun, one can solve for longitude and latitude λ and γ, completing the navigation solu-
tion. Strictly, one needs to use the sun vector from the navigation point obtained by adding the Earth center to sun
vector to the position vector from Earth center of the observation point, which incidentally is unknown! However,
since Earth radius is so much smaller than the distance to the sun the maximum error is less than
ε ≤ tan−1 re/Rs = 0. 12o. Navigating from another star the maximum error is totally negligible. Conversely, if this is
significant, or if navigating with respect to a closer body like the moon or an Earth satellite, Earth radius should be
included and perhaps modified by the geodetic flat Earth model.

At sun rise or set El = sin El = s1 = 0 yielding s2
2 + s2

3 = 1 and solving from s1

cos(λ + θg(t ) − αs) = −tanγ tan δs

then substituting in s2,
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s2
2 = cos2 δs(1 − tan2 γ tan2 δs) = cos2 δs

(cos2γ cos2 δs − sin2 γ sin2 δs)

cos2 γ cos2 δs

=
cos2 γ cos2 δs − sin2 γ sin2 δs

cos2 γ

giving the unique value of sun azimuth at sunset (or rise) Az0,

sin Az0 = s2 = √  cos2 γ cos2 δs − sin2 γ sin2 δs

cos γ
= √  cos2 γ[cos2φ +cos2(23. 5) sin2 φ] − sin2 γ[sin2(23. 5) sin2 φ]

cos γ
.

At the equinoxes δs = 0 and φ = ±π/2, sin Az0 = ±1 and Az0 = ±π/2 = ±90o, i.e. due East or West. Alternately,

sin Az0 = s2 = ± cos δs√  1 − tan2 γ tan2 δs

vanishes yielding at Az0 = 0o, 180o at latitude γ = ±(90 − 23. 5)o on the artic circle(s) at solstices when δs = ±23. 5o

and ≤ (90 − 23. 5)o for lower latitudes. Qualitatively, the artic circle has one day per year, the solstice, of no sunset
(or sunrise) while higher altitudes have multiple days of continual sun or dark, the number increasing with latitude.
To compute the time of sunset, denoting this particular value of θg(t ) as θg(t0),

θg(t0) = Sin−1[−s2/cosδs] − λ + αs = ±Sin−1[√  1 − tan2 γ tan2 δs] − λ + αs .

To complete the navigation solution we must solve for longitude and latitude λ and γ in terms of the measure-
ments Az and El. It is presumed that local time of day θg(t ) is known along with time of year φ, which defines
αs, δs, also known. From 7.13, s2 = sin Az cos El, leads simply equating to s2 in 7.12 as

λ + θg(t ) = Sin−1[−s2/cosδs] + αs = Sin−1[− sin Az cos El/cosδs] + αs . (7.14a)

Then manipulating s1

s1 = sin El = cos γ cos δs cos(λ + θg(t ) − αs) + sin γ sin δs = A sin γ + B cos γ

= √  A2 + B2




A

√  A2 + B2
sin γ +

B

√  A2 + B2
cos γ





= √  A2 + B2[sin γ cos α + cos γ sin α] = √  A2 + B2 sin(γ + α)

where

sin α =
B

√  A2 + B2
=

cos δs cos(λ + θg(t ) − αs)

√  sin2 δs + cos2 δs cos2(λ + θg(t ) − αs)
; cos α =

A

√  A2 + B2
=

sin δs

√  sin2 δs + cos2 δs cos2(λ + θg(t ) − αs)

giving

γ = Sin−1[s1/√  A2 + B2] − α = Sin−1[sinEl/√  A2 + B2] − α (7.14b)

= Sin−1






sin El

√  sin2 δs + cos2 δs cos2(λ + θg(t ) − αs)






− Tan−1[(cos δs/sinδs) cos(λ + θg(t ) − αs)]

= Sin−1




sin El

√  1 − sin2 Az cos2 El





− Tan−1[(cos δs/sinδs){1 − √  sin2 Az cos2 El/ cos2 δs}] .

In evaluation of these we find frequent examples of inverse trigonometric function ambiguity leading to ±180o or
±360o modulo in the result. Presumably in any practical case the navigator knows what hemisphere he is on, hence
enough is known about λ, γ to compensate.

Frequently for analytical purposes it is desirable to pursue vector based solutions over the trigonometric. To
that end and as a check on the preceding the following alternate is developed. Eq. 7.12 can be equivalently written

s = eT
lh






cos γ[s1 cos(λ + θg(t )) + s2 sin(λ + θg(t ))] + s3 sin γ
s2 cos(λ + θg(t )) − s1 sin(λ + θg(t ))

−sinγ[s1 cos(λ + θg(t )) + s2 sin(λ + θg(t ))] + s3 cos γ






= eT
lh






s1

s2

s3






. (7.15)

Noting
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s2 = √  s2
1 + s2

2[sin ξ cos(λ + θg(t )) − cos ξ sin(λ + θg(t ))] = √  s2
1 + s2

2 sin(ξ − λ − θg(t )) ,

having defined

sin ξ = s2/√  s2
1 + s2

2; cos ξ = s1/√  s2
1 + s2

2 .

so that

λ + θg(t ) = −Sin−1




s2

√  s2
1 + s2

2





+ ξ = −Sin−1




s2

√  s2
1 + s2

2





+ Tan−1[s2/s1] (7.16a)

= −Sin−1




s2

√  s2
1 + s2

2





+ Sin−1




s2

√  s2
1 + s2

2





= −Sin−1




s2√  s2
1 − s2√  s2

1 + s2
2 − s2

2

s2
1 + s2

2





= −Sin−1




sin Az cos El

√  cos2 φ +cos2(23. 5o) sin2 φ





+ Tan−1




cos(23. 5o) sin φ
cos φ





= Sin−1[− sin Az cos El/ cos δs] + αs .

Next, multiplying s1 and s3 of 7.15 by sin γ and cos γ respectively, and adding produces

s3 = s1 sin γ + s3 cos γ =√  s2
1 + s2

3[sin γ cos σ + cos γ sin σ] = √  s2
1 + s2

3 sin(γ + σ)

sin σ = s3/√  s2
1 + s2

3; cos σ = s1/√  s2
1 + s2

3

γ = Sin−1[s3/√  s2
1 + s2

3] − σ = Sin−1




s3

√  s2
1 + s2

3





− Sin−1




s3

√  s2
1 + s2

3





= Sin−1




s3√  s2
1 − s3√  s2

1 + s2
2 − s2

3

s2
1 + s2

3





(7.16b)

= Sin−1




sin(23. 5o) sin φ

√  sin2 El + cos2 Az cos2 El





− Tan−1[cos Az cos El/ sin El] .

= Sin−1




sin(23. 5o) sin φ

√  1 − sin2 Az cos2 El





− Tan−1[cos Az cos El/ sin El] .

dλ
dθg

= 1;
dλ
dφ

=
dαs

dφ
=

cos(23. 5o) cos2 αs

cos2 φ
=

cos(23. 5o)

cos2 φ +cos2(23. 5o) sin2 φ
≤ 1/ cos(23. 5o) = 1. 09
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8.0 Orbit Perturbations

8.1 Earth Gravitational Orbit Perturbations

The nonspherical mass distribution (oblateness) of the earth, Ref. 10 page 318, produces gravitational forces that are
a function of position. In Ref. 1 page 366 or Ref. 3 page 62 the first order secular orbit perturbations are derived as:

Anomalistic Period: P = 2π/n ; no = √  µ/a3 = 2π/Po

n = no[1 + (3 / 2)J2r2
ea−2{1 − e2}−3/2{1 − (3 / 2)sin2i}] (8.1)

= no[1 + 6. 60624 × 104a−2{1 − e2}−3/2{1 − (3 / 2)sin2i}]

= no[1 + 1. 92361 × 104a−2{1 − e2}−3/2{1 − (3 / 2)sin2i}] = no; i = Sin−1{√  2/3} ≈ 54. 7o .

Regression of Nodes:

Ω = Ωo − Ω̇(t − to) (8.2)

= Ωo − {(3 / 2)J2√  µr2
ea−7/2(1 − e2)−2 cos i}(t − to)

= Ωo − {2. 06474 × 1014a−7/2(1 − e2)−2 cos i}(t − to)

= Ωo − {2. 383114 × 1013a−7/2(1 − e2)−2 cos i}(t − to) .

Advance of Perigee:

ω = ωo + Ω̇{[2 − (5 / 2)sin2i] /cosi}(t − to) .  (8.3)

The numerical values use µ = [631. 35 km3/2/sec]2 = [250. 26 nm3/2/sec]2 and J2 = 1. 08263 × 10−3. The first numeri-

cal coefficient requires a in km while the second requires a in nautical miles. Ω̇ is in degrees/day.

8.1.1 Sun Synchronous Orbit

If the product of terms in a, e, and i in the nodal regression rate expression is −4. 7737 × 10−15km−7/2 the re-
gression rate will be 0. 9856o/day and the orbit will be fixed with respect to the sun and with respect to time of day
(Ref. 3 page 68).

8.1.2 Molniya Orbit

It can be seen that in the last equation if i = Sin−1[√  4/5] = 63. 435o the perigee is fixed. This orbit with 12
hour period and argument of perigee ω = 270o was chosen for the Russian Molniya communications satellites
(1965) to cover the high latitude polar regions and thus has become known as the Molniya orbit. The argument of
perigee is fixed regardless of its absolute position and the period.

8.2 Triaxiality of Earth’s Gravitational Potential (E-W Stationkeeping)

Because the earth gravitational potential varies as one moves around an equatorial circumference, tangential
perturbing accelerations alter the orbit of a geosynchronous satellite. The earth shape can be thought of as elliptical
and the resultant longitudinal motion can be likened to the angular motion of a frictionless pendulum. Although this
effect is probably small with regard to most orbits, for a geostationary satellite located far from a stable null it can be
the dominant east-west perturbation and requires stationkeeping to maintain the satellite in the desired bounds.
Other important east-west perturbations are solar acceleration (discussed below) and error induced by the much
larger inclination stationkeeping maneuvers.

Assuming the drift rate of a satellite is initialized at zero with the satellite at the edge of a stationkeeping dead-
band ∆λ farthest from the stable node λo, the longitude is approximated in the neighborhood of the station λ1 by

λ(t ) = λ1 − ∆λ + (ν/2)[sin2(λ1 − λo)]t2; =>




λ(0) = λ1 − ∆λ
λ(∆t) = λ1 + ∆λ

=> ∆t = 2√  ∆λ/[νsin2(λ1 − λo)] (8.4)

where λo = (106o ±6oW and 286o ±6oW) are the stable node locations, and ν = 9J̃22[reΩe/ro]2 = 1. 7 × 10−3deg/day2.

ro, re are respectively orbit and earth radius, Ωe is earth rate, and J̃22 = 3. 65 × 10−6 approximates the equatorial ellip-
ticity coefficient in the Bessel function representation of the earth gravitational function (Ref. 6 and 7).
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The time ∆t is the time to drift one way across a control deadband 2∆λ, yielding a round trip maneuver inter-
val

2∆t = 4√  ∆λ/[νsin2(λ1 − λo)] ≥ 4√  ∆λ/ν = 4√  (0. 05o)/[1. 7 × 10−3]o/day2 = 21. 7 days;




λ1 = λo ±π/4

∆λ = 0. 05o . (8.5)

For a single δV impulse, in geostationary orbit, the semimajor axis δa and incremental velocity change δV are re-
lated as δa = 2ro(δV/V), and implicitly differentiating P = 2πa3/2/√  µ = 2π/(Ωs + Ωe), longitude drift rate is1

δλ̇ = −[(3 / 2)δa/a](Ωs + Ωe) = −[3δV/V](Ωs + Ωe) => δV = −(1 / 3)δλ̇V/ (Ωs + Ωe) (8.6)
For geosynchronous velocity, V = 10080. 9 ft/sec, deadband ∆λ = 0. 05o, and ν = [1. 7 × 10−3]o/day2, giving

λ̇(∆t) = [νsin2(λ1 − λo)]∆t = 2√  ∆λ[νsin2(λ1 − λo)] ≤ 2√  ∆λ ν (8.7a)

= (180 /π)2√  (π/180)(0. 05o)(π/180)([1. 7 × 10−3]o/day2) = 0. 018o/day

δV = −(2 / 3)√  ∆λ[νsin2(λ1 − λo)][V/ (Ωs + Ωe)] ≤ −(2 / 3)√  ∆λ ν[V/ (Ωs + Ωe)] (8.7b)

≤ −[(1 / 3)(0. 018o/day) / (360o/day)](10080. 9 ft/sec) = 0. 172 ft/sec

One must impart twice this velocity impulse in order to stop the satellite and reverse the drift direction at the same
initial speed. Hence, approximate maximum yearly velocity impulse is2

∆V = 2[(365 day/year)/(2∆t)]δV = 2[(365 day/year)/(2∆t)](2 / 3)√  ∆λ[νsin2(λ1 − λo)][V/ (Ωs + Ωe)] (8.7c)
= [365 day/year](1 / 3)νsin2(λ1 − λo)[V/ (Ωs + Ωe)] ≤ [365 day/year](1 / 3)ν[V/ (Ωs + Ωe)] = 5. 77 ft/sec/year = 1. 76 m/sec/year .

λο λ1 

2∆λ 
.

λ .

 λ

2δλ (2δV) 

Figure 8.1  Oblateness Gravitational Acceleration and Typical E-W Stationkeeping Pattern.

.

1 P = 2πa3/2/√  µ =>
∂P

∂a
= 2π(3 / 2)a1/2/√  µ = (3 / 2)P/a; P = 2π/Ωe =>

∂P

∂Ωe

= −2π/Ω2
e = −P/Ωe

2 This can vary at worst case points by ±0. 3 m/sec/year when higher order gravity terms are included.
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8.3 Sun and Moon Gravitational Perturbations(N-S Stationkeeping)

The gravitational attraction of the sun and moon induce secular and periodic changes in inclination of an earth
orbiting spacecraft. This gives rise to need for North-South Stationkeeping or orbit inclination correction of a
geosynchronous satellite. In Ref. 2 the first order drift rate is obtained as

β̇̇β = eT
i [0. 132sin{Ωm(t − to)} + 0. 29sin{2Ωs(t − to)}, 0. 852 + 0. 098cos{Ωm(t − to)} − 0. 29cos{2Ωs(t − to)}, 0]T deg/year (8.8)

where ββ is orbit inclination, Ωs is Earth rate about the Sun, Ωm = Ωs/18. 6 is the 18.6 year phase of the moon rate.
The reference epoch is to = March 22, 1969; 0000 hrs (JD = 2440302.5), and the twice Earth orbit rate terms peak
45.67 days after each equinox. Figure 2.1 shows the Earth at the four seasonal points on the ecliptic. The pole of
the moon’s orbit is displaced about 5.15 deg from the pole of the ecliptic and precesses around the latter with the
noted 18.6 year period. The predominant inclination drift is the secular term above induced by the gravity of the
sun. As an example, Figure 8.2 shows Earth-Satellite-Sun geometry at Winter Solstice when the right ascension of
the sun is 270 deg. The gravitational acceleration of the sun at noon and midnight is indicated on the sketch. At
noon when the satellite is closest to the sun the gravitational acceleration, a, is larger, and in particular the orbit nor-
mal components at noon and midnight integrate to an equivalent Southward impulse at noon, while the effects at
dawn and dusk have equal and opposite canceling effect. This induces an ascending node at 90 deg right ascension
in the satellite orbit. A similar sketch at an equinox shows that orbit normal components of sun gravitational accel-
eration at 6 am and 6 pm are equal and opposite in sign, tending again to rotate the orbit about the 90 deg right as-
cension axis. More generally, at all times of year the sun gravitational pull induces an ascending node near 270o,
fixed inertially and therefore rotating through all hours of the satellite day. As can be seen from the drift rate expres-
sion above, the moon has only a small perturbing effect (≈ ± 9o) on the described dominant sun effect.

North-South stationkeeping is performed by inducing a velocity increment at the proper node to cancel the sun
and moon effects. For North accelerating thrusters the maneuver is near the descending node at 270 deg right ascen-
sion and for South accelerating thrusters it is near 90 deg. Another consequence of the derivation is that maneuver
time at the satellite progresses through 24 hours over one year so a maneuver can occur at any hour. Further, in
eclipse or equinox seasons the maneuvers are near 6 am or 6 pm, so a N-S maneuver is never required during
eclipse. Using synchronous orbit velocity of Vs = 10, 060 ft/sec, the required annual stationkeeping velocity incre-
ment varies between 132 and 167 ft/sec with an average value of 150 ft/sec.

 ∆V  Vo 

 V1 

 Sun 

 β 

 β 

 Equator 

Stationkeep at Midnight 
for this Geometry 

 Orbit Plane 

Figure 8.2  Earth-Satellite-Sun Geometry at Winter Solstice (December 21).

 αa 

 

 β = [0.852 + 0.098cosξ] deg/year 

  Sun  Earth 
 Equator 

 a 

 Satellite Noon 

 North 

 Satellite Midnight 

 Ecliptic 
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8.4 Orbit Perturbation Induced by Solar Pressure Acceleration

Acceleration due to solar radiation pressure integrates to a velocity change in a spacecraft, and hence alters its
orbit. The pressure varies as distance squared from the sun, and at earth (1 AU) is (1 + µγ)1µlb/m2 where µ is the re-
flectance coefficient, µ = 1 for 100% reflection, and γ is the diffusivity coefficient, γ = 1 for specular reflection. For
earth orbit the solar acceleration can be separated into orbit normal and in plane components. The orbit normal
component has vanishing net effect over one orbit. The in plane component along the sun line is essentially iner-
tially fixed and tends to gradually alter the eccentricity and shift the line of apsides of an orbit. For a circular orbit,
the in plane acceleration will alter eccentricity by inducing a perigee at dusk and an apogee at dawn as depicted be-
low on Figure 8.33. The perturbation can be controlled by executing a single radial velocity maneuver of magnitude
∆VR outward at noon or inward at midnight. Alternately it can be corrected by two tangential maneuvers of magni-
tude ∆VT = ∆VR/4 each, increasing velocity at dawn and decreasing it at dusk.

Line of Apsides

 ∆V 

 ∆V 

 ∆V 

 ∆V 
 Earth 

 Dusk 

 Dawn 

 Noon 

 Midnight 

VT 
 ∆e 

 Sun 

b)  Influence of solar radiation force on orbit

∆e = (3/2)[∆T/VT][F/m] = (3/2)[(2π/Ωo)/VT][F/m]; per orbit 

∆VT = ∆e[VT/2] = (3/4)∆T[F/m]; per orbit 

Typical Spacecraft: 
∆VT = (3/4)∆T[αPA/m] = ∆VR/2 

        = (3/4)[86400 sec][(1 µlb/m2))(70 m2)/(100 slug)] 
        = 0.045 ft/sec/day  16.5 ft/sec/year

Figure 8.3  Effect of Solar Radiation Pressure on Orbit Must be 
                  Nulled by Noon or Midnight Radial ∆VR. 

a)  Solar radiation force

 Notes: 
Acceleration component normal to orbit plane alters inclination, but has zero effect over an orbit. 
Acceleration component at dawn lowers perigee at dusk ∆e/3. 
Acceleration component at dusk raises apogee at dawn ∆e/3. 
Acceleration component at noon lowers perigee at dusk ∆e/6. 
Acceleration component at midnight raises apogee at dawn ∆e/6. 
Total effect over one orbit is equal lowering of perigee at dusk and raising of apogee at dawn for total ∆e.  

δφe/2 = (24/2)Ωs  0.9856/2

Over multiple orbits the acceleration effect accumulates, both increasing eccentricity and rotating the line of
apsides. For near-circular orbits the six classical elements are conveniently replaced by three 2-vectors, eccentricity,

3 The eccentricity 2-vector is in the orbit plane with magnitude e and directed from apogee to perigee, viz.

e = eT
o e[1, 0].
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inclination, and longitude (argument of perigee and mean anomaly)4. Beginning with a perfect orbit, over the first
solar day, the small eccentricity δe is induced with line of apsides at inertial angle at half the earth orbit travel from
the starting location, δφe/2 = (24hr )/2)Ωs = 0. 9856o/2. On each subsequent day the change is constant in magnitude
while advanced in angle by δφe, close to 1o, or on the nth day the added vector eccentricity is δe at angle
(n − 1/2)δφe. Since only the magnitude of one orbit (daily) change depends on spacecraft parameters, the accumula-
tion over n days is otherwise dependent only on sidereal rate Ωs for geostationary orbit as

∆e = δe
n

i = 1
Σ





cos(i − 1/2)δφe

sin(i − 1/2)δφe





; . n, |∆e| /δe. φe ≈









1, 1. 00, 0. 4928o

14, 13. 97, 6. 9o

30, 29. 67, 14. 78o

183, 116. 26, 90. 19o

365, 0. 2425, 179. 9o

. (8.8)

cos[(n-1/2)δφ] 
sin[(n-1/2)δφ]

δen = |δe|

δe1

δe2

δen
δe91

δe183

Σ
i=1

n
cos[(i-1/2)δφ] 
sin[(i-1/2)δφ]∆en = |δe|

nδφ = ∆en = (n/π)|δe| 

1 - x

2 - y

2nδφ = 2π ∆e2n  0 

δφ = 0.9856 ; Geostationary Orbit

0 
1

∆en

Figure 8.4  Path of Eccentricity Vector due to Solar Pressure Acceleration in Geostationary Orbit.

1 - x

2 - y

δ
∆e

θ

(a) Expanded Daily Eccentricity Progression Incrementing

(b) Uncorrected Solar Pressure Eccentricity Effect Over One Year

   sinθ 
1 − cosθ∆e = δ 

|∆e| = 2δsin(θ/2) 
δ = (365/2π)δe = 58δe 

ω

eo = 0
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9.0 AMF ∆V Doppler Shift Derivation

9.1 Radial ∆V Calculation

Consider a ground station at latitude δ and longitude λ with respect to a spacecraft as depicted by Figure 9.1.
Let eo be a vector basis with 3-axis North and l-axis in the equatorial plane directed from the earth center to the
spacecraft cm. The orbit radius vector is

ro = eT
o ro[1, 0, 0]T

and a vector from earth center to the ground station is

rs = eT
o re[cos δcos λ, cos δsin λ, sin δ]T .

We wish the component of velocity change colinear with the ground station to spacecraft line of sight, i.e., the vector

ro − rs = eT
o [ro − re cos δcos λ, −re cos δsin λ, −re sin δ]T .

To first order for synchronous orbit injection at the transfer orbit ascending node the velocity change ∆V can be ex-
pressed

∆∆V = eT
o [0, Vs − Vt cos θi, −Vt sin θi]

T

where Vs = 10, 088 ft/sec and Vt = 5, 280 ft/sec are respectively drift orbit and transfer orbit perigee velocity magni-
tudes and θi is transfer orbit inclination. Drift orbit inclination is assumed negligible.

The desired radial velocity component is then obtained as

∆Vn = [ro − rs] ⋅ ∆∆V/|ro − rs| = −re[(Vs − Vt cos θi) cos δsin λ − Vt sin θi sin δ]/|ro − rs|

where
|ro − rs|

2 = r2
o + r2

e − 2rore cos δcos λ .

9.2 Fr equency Shift

Let V1, V2 be the radial components of velocity positive away from the ground station before and after AMF.
Then the doppler shift is

∆f = f2 − f1 = fo[1 / (1 + V2/c) − 1/(1 + V1/c)] ≈ fo[(1 − V2/c) − (1 − V1/c)] = −fo(V2 − V1)/c = −fo∆V/c ,

where c = 3 × 108 m/sec = 9. 84 × 108 ft /sec is the speed of light and fo is the down link frequency.

Vs

Vt

Figure 9.1  Geometry of AMF ∆V and Doppler Frequency Shift Analysis. 

Earth Center

Ground Station

Spacecraft θi

∆V

ro
ro - rs 

rs

2

3

eo

λ δ
1

North

28



10.0 Satellite Ground Track

10.1 Ground Track of the Sub-Satellite Point (Yaw Axis)

We dev elop in this section the trajectory on the earth surface of the subsatellite point of an orbiting satellite in
standard earth longitude latitude coordinates. Eq. 10 transforms from an inertial basis (ECI) ei to an orbit reference
frame eo and (11) completes the transformation to a frame e1 rotating with true anomaly of spacecraft motion having
1-axis earth center to spacecraft directed and 3-axis north. Hence, a unit vector through the subsatellite point is
given by

u = eT
1 [1, 0, 0]T = eT

o AT
3 (v)[1, 0, 0]T = eT

i AT
3 (Ω)AT

1 (i)AT
3 (ω + v)[1, 0, 0]T . (10.1)

An earth fixed basis ee is related to ei as

ee = A3(Ωet)ei , (10.2)

where Ωe is earth inertial (sidereal) rate, so that the satellite directed unit vector in earth fixed coordinates is

u = eT
e A3(Ωet)AT

3 (Ω)AT
1 (i)AT

3 (ω + v)[1, 0, 0]T = eT
e A3(Ωet − Ω)AT

1 (i)AT
3 (ω + v)[1, 0, 0]T . (10.3)

To study just the shape of the ground track trajectory and ignoring lesser orbit perturbations such as nodal regression
and perigee drift we can set Ω = ω =0, and get

u = eT
e A3(Ωet)AT

1 (i)AT
3 (v)[1, 0, 0]T = eT

e






cosv cos Ωet + sinv cos i sin Ωet

−cosv sin Ωet + sinv cosi cos Ωet

sinv sini






= eT
e [u1, u2, u3]T . (10.4)

Note first that for i = 0, v = Ωet, the result reduces to u = eT
e [1, 0, 0]T, the geostationary case. Defining symbols and

noting their relationship to u,

λ = Tan−1[u2/u1] ≈ u2 ; longitude (10.5a)

γ = Tan−1[u3/√  u2
1 + u2

2] ≈ u3 ; latitude (10.5b)

= Tan−1[(sinv sin i)/(cos2v + sin2 v cos2 i)1/2] .

Taking only v = Ωet, provides the geosynchronous case as

u = eT
e






cos2 Ωet + cos i sin2 Ωet

(cosi − 1)sinΩet cos Ωet

sini sin Ωet






≈ eT
e






1

−(i2/4)sin2Ωet

i sin Ωet






; small i . (10.6a)

This yields peak longitude and latitude errors of u2 = λ = i2/4 and u3 = γ  = i respectively. The inclination and small
angle ground track trajectory are illustrated on Figure 10.1. Small angle pointing errors seen from the spacecraft are
altered by the factor 1/(ro/re − 1) = 0. 178.

Earth

Equator

Inclined Orbit

i
i

i2/4

Figure 10.1  Geosynchronous Inclination and Ground Track Geometry. 
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10.2 Ground Track Induced by Eccentricity

Consider the in-plane deviation from mean anomaly M of true anomaly v for a circular orbit induced by varia-
tion in eccentricity e. Not very interesting in general, but for a geosynchrouous orbit this results in a small East-
West drift over the orbit. Differentiating mean anomaly implicitly in Kepler’s Equation and substituting in terms of
true anomaly from (1.2a)

dM

de
= 0 =

d

de
[E − e sin E] = (1 − e cos E)

dE

de
− sin E =>

dE

de
=

sin E

(1 − e cos E)
=

sin v

√  1 − e2
.

Then implicitly differentiating cosE or a similar operation with sinE leads after tedious manipulation and substitu-
tion to

d

de
cosE = −sinE

dE

de
=

d

de



cosv + e

1 + ecosv



=>
dv

de
=

[2 + ecosv] sin v

[1 − e2]
. (10.6b)

At the apoapsides mean anomaly, M, and true anomaly, v, are in sync, while at 90o past perigee v is ahead (East
drift) of M while at M = 270o, v lags behind (West drift).

10.3 Ground Track of an Arbitrary Spacecraft Axis in Arbitrary Orbit

In this section we shall investigate the ground track of an arbitrary line or axis fixed in the spacecraft body (or
fixed in the orbital basis e1) with perfect attitude control. We define the axis by the point that intersects the earth
surface in an unperturbed equatorial orbit. A unit vector from the spacecraft to earth center has been developed
above as u. Using this, the position vector is obtained by multiplying by the orbit radius ro as

ro(v, e, ω, i, Ω) = eT
1 ro(v, e)[1, 0, 0]T = eT

o AT
3 (v)ro(v, e)[1, 0, 0]T = eT

i AT
3 (Ω)AT

1 (i)AT
3 (ω + v)ro(v, e)[1, 0, 0]T

= eT
e A3(Ωet)AT

3 (Ω)AT
1 (i)AT

3 (ω + v)ro(v, e)[1, 0, 0]T , (10.7)

while a vector from earth center to a point at longitude, latitude λs, δs respectively is

rs = eT
e re[cosλs cos δs, sin λs cos δs, sin δs]

T = eT
i reAT

3 (Ωet)[cosλs cos δs, sin λs cos δs, sin δs]
T (10.8)

= eT
o reA3(ω)A1(i)A3(Ω)AT

3 (Ωet)[cosλs cos δs, sin λs cos δs, sin δs]
T

= eT
1 reA3(v + ω)A1(i)A3(Ω)AT

3 (Ωet)[cosλs cos δs, sin λs cos δs, sin δs]
T .

Referring to the geometric sketch in Figure 10.2, we wish to define a vector rt in spacecraft body coordinates
eb that nominally points to a designated point rs on the earth surface. Assuming perfect attitude control where the
pitch axis is normal to the orbit plane and the yaw axis remains nadir pointed it will be adequate to treat rt as fixed in
the orbital basis e1. Hence, we can write rt as

rt = rs − ro(0) = eT
e re[cosλs cos δs, sin λs cos δs, sin δs]

T − eT
1 ro[1, 0, 0]T (10.9)

and transform to orbital basis e1 as

rt = eT
1 reA3(v)A3(ω)A1(i)A3(Ω)AT

3 (Ωet)[cosλs cos δs, sin λs cos δs, sin δs]
T − eT

1 ro[1, 0, 0]T (10.10)

= eT
1 reA3(Ωot + vo)A3(ω)A1(i)A3(Ω)AT

3 (Ωet)[cosλs cos δs, sin λs cos δs, sin δs]
T − eT

1 ro[1, 0, 0]T

= eT
1 reA3(Ωet)A3(ω)A1(i)A3(Ω)AT

3 (Ωet)[cosλs cos δs, sin λs cos δs, sin δs]
T − eT

1 ro[1, 0, 0]T ,

where we have sequentially restricted v to a circular orbit, v̇ = Ωo and geosynchronous orbit v̇ = Ωe. This is a vec-
tor, to be taken fixed in the spacecraft body, that points to the designated point on the earth surface at rs when the
spacecraft body attitude is perfectly aligned with orbital basis e1 and at some selected instant in time or equivalently
true anomaly. At least for geosynchronous orbits it suits our present purpose and simplifies the derivation to define
rt with Ω = i = ω =0 which yields

rt = eT
1 re[cosλs cos δs, sin λs cos δs, sin δs]

T − eT
1 ro[1, 0, 0]T = eT

1 re[cosλs cos δs − ro/re, sin λs cos δs, sin δs]
T . (10.11)

Using this definition for the body fixed pointing vector, say a beacon null, it transforms back to e1 as

rt = eT
b re[cosλs cos δs − ro/re, sin λs cos δs, sin δs]

T = eT
1 AT

b AT
a (φ1, φ2, φ3)re[cosλs cos δs − ro/re, sin λs cos δs, sin δs]

T (10.12)

where Aa, Ab are the body attitude transformations of (2.11) and (2.12).
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Figure 10.2  General Three Dimensional Pointing or Ground Track Geometry. 

Now this vector, fixed in the spacecraft body and in the ideally pointed orbital basis, varies in the earth basis as a
function of orbit orientation and spacecraft position in orbit. Rotating back to the earth fixed basis for arbitrary orbit
parameters

r̂t = eT
e reA3(Ωet)AT

3 (Ω)AT
1 (i)AT

3 (ω)AT
3 (v)[cosλs cos δs − ro/re, sin λs cos δs, sin δs]

T (10.13)

Again for geosynchronous orbits we take Ω = ω =0 and v = Ωet, but this time i ≠ 0,

r̂t = eT
e reA3(Ωet)AT

1 (i)AT
3 (Ωet)[cosλs cos δs − ro/re, sin λs cos δs, sin δs]

T (10.14)

Next, we require a vector from the spacecraft to the original desired target point on the earth at rs, giv en by

r̃t = rs − ro(i) = rs − eT
1 ro[1, 0, 0]T = rs − eT

e roA3(Ωet)AT
3 (Ω)AT

1 (i)AT
3 (ω)AT

3 (v)[1, 0, 0]T (10.15)

= eT
e re[cosλs cos δs, sin λs cos δs, sin δs]

T − eT
e roA3(Ωet)AT

1 (i)AT
3 (Ωet)[1, 0, 0]T

Then we denote with û the general unit vector from the spacecraft to the earth point as

û =
r̂t

|r̂t|
= û(Ωet, Ω, i, ω, v, λs, δs) = eT

e [û1, û2, û3]T . (10.16a)

In like fashion for simplicity of notation we drop the ˜ and write

u =
r̃t

|r̃t|
= u(Ωet, Ω, i, ω, v, λs, δs) = eT

e [u1, u2, u3]T . (10.16b)

The ground track of an axis u for a geostationary orbit having i = 0 and v = Ωet is a point and one way to describe
the ground track of the same axis û in a spacecraft in the more general orbit is to compute the angle(s) between these
two unit vectors. This is perhaps most usefully done as ’azimuth’ and ’elevation’ or pitch (ε3) and roll (ε1) angles in
the true spacecraft orbit plane basis e1 as these are representative of the attitude steering angles required to point at
the fixed ground track point despite the perturbation. In terms of the unit vector components

sin ε3 = eT
e

[û1, û2, 0]T

√  û2
1 + û2

2

× eT
e

[u1, u2, 0]T

√  u2
1 + u2

2

=
û1u2 − û2u1

[( ̂u2
1 + û2

2)(u2
1 + u2

2)]1/2
(10.17a)

cos ε3 = eT
e

[û1, û2, 0]T

√  û2
1 + û2

2

⋅ eT
e

[u1, u2, 0]T

√  u2
1 + u2

2

=
û1u1 + û2u2

[( ̂u2
1 + û2

2)(u2
1 + u2

2)]1/2
(10.17b)

sin ε1 = eT
e [0, √  û2

1 + û2
2, û3]T × eT

e [0, √  u2
1 + u2

2, u3]T = u3√  û2
1 + û2

2 − û3√  u2
1 + u2

2 (10.17c)

cos ε1 = eT
e [0, √  û2

1 + û2
2, û3]T ⋅ eT

e [0, √  u2
1 + u2

2, u3]T = √  û2
1 + û2

2√  u2
1 + u2

2 + u3û3 . (10.17d)
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The polar angle between the two is simply given by the vector products

sin ε = |û × u| ;  cos ε = û ⋅ u . (10.18)

In some applications it may be useful to compute the earth longitude and latitude errors between rs and r̂s. These at-
titude angles will describe the ground track or pointing error excursions induced by orbit motion of an arbitrary axis
in the spacecraft body when the nominal attitude control system tracks nadir or the subsatellite point with pitch axis
(3-axis in e1) orbit normal.

Expanding the earth point radius with Ω = ω =0 produces

r̂t = eT
e re






cos v cos Ωet + cos i sin v sin Ωet

−sinv cos Ωet + cos i cos v sin Ωet

sin i sin Ωet

−cosv sin Ωet + cos i sin v cos Ωet

sin v sin Ωet + cos i cos v cos Ωet

sin i cos Ωet

− sin i sin v

− sin i cos v

cos i











cos λs cos δs − ro/re

sin λs cos δs

sin δs






,(10.19)

and

r̃t = eT
e re






cos λs cos δs

sin λs cos δs

sin δs






− eT
e ro






cos v cos Ωet + cos i sin v sin Ωet

−sinv cos Ωet + cos i cos v sin Ωet

sin i sin Ωet






. (10.20)

This can easily be generalized to specific orbit orientation by substituting Ωet = Ωet − Ω and v = v + ω. Instead, we
choose here to particularize it to the geosynchronous orbit by substituting v = Ωet, to get

r̂t = eT
e re






1 + (cosi − 1)sin2Ωet

(cosi − 1)sinΩet cos Ωet

sin i sin Ωet

(cosi − 1) sin Ωet cos Ωet

1 + (cosi − 1)cos2Ωet

sin i cos Ωet

− sin i sin Ωet

− sin i cos Ωet

cos i











cos λs cos δs − ro/re

sin λs cos δs

sin δs






, (10.21)

r̃t = eT
e re






cos λs cos δs − (ro/re)[1 + (cosi − 1)sin2Ωet]

sin λs cos δs − (ro/re)[(cosi − 1)sinΩet cos Ωet]

sin δs − (ro/re)[sini sin Ωet]






.

These give an expansion of û and u for geosynchronous orbits. The previously derived subsatellite point ground
track results by applying this with λs = δs = 0.

Although we now hav e expressions to compute pointing excursions ε1, ε3, this is still perhaps too much infor-
mation as it computes the angles at every point in time. Instead, it seems desirable to compute just the maximum ex-
cursions of each. Analytically this appears quite unwieldy, so at least for geosynchronous orbits with limited incli-
nation, say < 30o, we shall apply judgement and guess that the maximum excursions occur at the same points as pre-
viously developed to the simpler case of subsatellite pointing, i.e., maximum roll error at the apsides 90o from the
node, and maximum pitch error at the four points 45o from the nodes. By our arbitrary selection of Ω = ω =0 the
node and "perigee" are both at Aries, as is the satellite at t = 0. Choosing the satellite longitude on the earth at Aries
also at t = 0 and using λs as station longitude with with respect to the satellite longitude, we then get the apsides at
Ωet = ± 90o and the pitch extremes at Ωet = ± 45o and 180o ± 45o. Then

r̂t = eT
e re






cos i

0

± sin i

0

1

0

−+ sin i

0

cos i











cos λs cos δs − ro/re

sin λs cos δs

sin δs






= eT
e re






cos i[cosλs cos δs − ro/re] −+ sin i sin δs

sin λs cos δs

± sin i[cosλs cos δs − ro/re] + cos i sin δs






; Ωet = ± 90o

= eT
e re






cos i[cosδs − ro/re] −+ sin i sin δs

0

± sin i[cosδs − ro/re] + cos i sin δs






= eT
e re






cos(δs ± i) − (ro/re)cosi

0

sin(δs ± i) −+ (ro/re)sini






; Ωet = ± 90o , λs = 0 (10.22)

and

û = eT
e

1

√  1 + (ro/re)2 − 2(ro/re)cosδs






cos(δs ± i) − (ro/re)cosi

0

sin(δs ± i) −+ (ro/re)sini






; Ωet = ± 90o , λs = 0 (10.23)

Similarly we expand the second vector
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r̃t = eT
e re






cos λs cos δs − (ro/re)cosi

sin λs cos δs

sin δs
−+ (ro/re)sini






; Ωet = ± 90o = eT
e re






cos δs − (ro/re)cosi

0

sin δs
−+ (ro/re)sini






; Ωet = ± 90o , λs = 0(10.24)

u = eT
e

1

√  1 + (ro/re)2 − 2(ro/re)cos(δs
−+ i)






cos δs − (ro/re)cosi

0

sin δs
−+ (ro/re)sini






; Ωet = ± 90o , λs = 0 (10.25)

hence,

tan ε1 =
|û × u|

û ⋅ u
=

± sin i + (ro/re)[sin(δs
−+ i) − sin δs]

(ro/re)2 + cos i − (ro/re)[cos(δs
−+ i) + cos δs]

. (10.26)

For the other limiting case where we expect maximum pitch error

r̂t = eT
1

re

2






(cosi + 1)

± (cosi − 1)

± √ 2 sin i

± (cosi − 1)

(cosi + 1)

√ 2 sin i

−+√ 2 sin i

√ 2 sin i

cos i











cos λs cos δs − ro/re

sin λs cos δs

sin δs






(10.27)

= eT
e

re

2






2cosλs cos δs − (ro/re)[cosi + 1]

2sinλs cos δs
−+ (ro/re)[cosi − 1]

2sinδs
−+ √ 2(ro/re)[sini]






; Ωet = ± 45o .

10.4 Fixed Point Attitude Tracking(Beacon Tracking)

The above ground track or attitude angles assume attitude control tracking of the subsatellite point, which it-
self is moving on the earth surface. This would result for example by earth sensor attitude sensing with no supple-
mental orbit corrections. Another case of significant interest is when a spacecraft beacon sensor tracks an earth fixed
beacon, while we are interested in the pointing error excursions of some other axis in the spacecraft body due to or-
bital motion. In the above we defined the spacecraft axis, say a beacon boresight, by the earth longitude latitude co-
ordinates λs, δs where this axis intercepts the earth in the absence of orbit perturbation. Hence, the attitude angles
may be written as ε1(λs, δs), ε3(λs, δs). In the case of beacon tracking where we wish the pointing excursions of a
second point, say λt, δt while the beacon pointing error is nulled, we denote the residual by δεi and compute it as

δεi = εi(λt, δt) − εi(λs, δs) .  (10.28)

10.5 Doppler Shift Evaluation for Inclined Orbit

The doppler frequency shift is proportional to the velocity along the line of sight to the radiation source

ṙ =
dr̃t

dt
⋅

r̃t

|r̃t|
. (10.29)

The indicated derivative is

dr̃t

dt
= eT

e − roΩe






(cosi − 1)2sinΩet cos Ωet

(cosi − 1)[cos2Ωet − sin2 Ωet]

sin i cos Ωet






= eT
e − roΩe






(cosi − 1)sin2Ωet

(cosi − 1)cos2Ωet

sin i cos Ωet






. (10.30)

The dominant term is the 1-axis term

ṙ ≈ −roΩe(cosi − 1)sin2Ωet .  (10.31)
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11.0 Simple Eclipse Model

Let ro and rh = rhs be vectors respectively from earth center to a spacecraft and the sun, expanded in the same
basis ei in Eqs. 37 and 44 respectively. Eclipse occurs when the angle ν between the two vectors −ro and rh − ro,
say

tan ν =
[rh − ro] × ro

|rh − ro| ⋅ |ro|
≈

rh × ro

|rh| ⋅ |ro|
(11.1)

is less than the earth chord. Let the earth and sun angular subtense as seen from the spacecraft whose eclipse we are
modeling be respectively λe, and λs = 0. 53o. Assuming the earth disk as much larger than the sun, we can approxi-
mate the earth edge as a straight line passing across the circular sun disk. This should hold for all satellites having
orbit radius small compared to the earth-sun distance. Denoting the sun disk radius as r, and a measurement of the
visible portion along a diameter normal to the earth edge as r + x, the ratio of eclipsed area Ax to total area A = πr2

is

Ax/A =







1 ;  x/r ≤ −1

{r2[π/2 − Sin−1x/r ] − x√  r2 − x2}/[πr2] = {[π/2 − Sin−1x/r ] − (x/r )√  1 − (x/r )2}/[π] ; −1 < x/r < 1

0 ;  x/r ≥ +1

. (11.2)

Then a solar array with normal pointed at angle θ with respect to the sun line will have output current

IP = Im cos θ[1 − Ax/A] (11.3)

where Im is maximum current the panel can produce. Let ξ denote true anomaly referenced to midnight, i.e., at mid-
night ξ(t ) = 0. For a circular orbit, for example

ξ(t ) = mod[Ωot, 2π] ε (0, 2π) .  (11.4)

Then let

λ(t ) =




ξ(t ) ; 0 ≤ ξ(t ) ≤ π
ξ(t ) − 2π ; π < ξ(t ) < 2π

= ξ(t ) − π{sgn[ξ(t ) − π] + 1} ε (−π, π) (11.5)

so that λ(t ) passes symmetrically through zero at midnight and any eclipse is centered at λ(t ) = 0 with entry and exit
symmetrically spaced on each side at ± λe/2. Then

x = (2r /λs)(|λ(t )| − λe/2) (11.6)

We handle the case where the sun is out of the orbit plane by angle β by reducing the earth disk angular subtense ac-
cordingly as

sin(λe/2) = √  (re/ro)2 − sin2 β
cos β

(11.7)

where re, ro are respectively earth and orbit radius. Note that for non circular orbits ro is not constant.

For geosynchronous orbit where Ωo = 0. 25o/min, eclipse seasons are about 40 days in duration when β < 8. 2o

with maximum eclipse length at equinox of 70 min and average eclipse duration of 53 min.
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Figure 11.1  Simplified Earth-Sun-Satellite Eclipse Geometry.

a) Earth-Sun Shadow Geometry b) Orbit Geometry of Eclipse
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12.0 Pointing Errors Induced by Orbit Perturbations

12.1 Orbit Inclination

When an earth-center sensing sensor is used, orbit inclination induces all three of North-South (roll), East-
West (pitch), and yaw pointing errors which are cyclic at diurnal frequency for roll and yaw and twice diurnal fre-
quency for pitch. The error geometry is depicted on Figure 12.1. This may be viewed as either a pure inclination or
a pure longitude error geometry. For the latter the curved arc viewed as the orbit trajectory, while for the former it is
simply the path of the inclination change. A payload offset pointing angle α is assumed to point to the target point a
r2, say at latitude λ. The offset pointing angle and latitude are related by

λ = Sin−1{ro sin α/re} − α ≈ α{ro/re − 1} ; α, λ small (12.1a)

or

α = Tan−1{ sin λ/(ro/re − cos λ)} ≈ λ/{ro/re − 1} ; α, λ small. (12.1b)

Figure 12.1  Pointing Error Induced by Orbit Perturbation with Earth-Center Pointing Sensor.
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In Figure 12.1, i is the orbit inclination angle and ε is the resultant North-South pointing error. We write

r1 = ro[cosi, sini, 0]T (12.2)

r2 = re[cosλ, sin λ, 0]T (12.3)

r3 = re[cos(λ + i), sin(λ + i), 0]T (12.4)

while

tan ε =
|[r1 − r2] × [r1 − r3]|

|[r1 − r2] ⋅ [r1 − r3]|
=

sini + (ro/re)[sin(λ − i) − sin λ]

(ro/re)2 + cosi − (ro/re)[cos(λ − i) + cos λ]
. (12.5)

≈ ε ≈
i[1 − (ro/re)cosλ]

(ro/re)2 + 1 − (ro/re)[i sin λ + 2cosλ]
; i small ,

≈ i/ (ro/re − 1) ; i, λ small .

This equation gives the extreme North-South pointing error ε, occurring at the orbit apsides, due to orbit inclination i
provided the pitch axis (spin axis) is maintained at orbit normal. A yaw error equal to i will also occur at the orbit
nodes. If the spin axis is maintained at equatorial normal the North-South and yaw errors become respectively ε + i
and zero. This attitude is advantageous for a spacecraft with active North-South pointing capability, such as a roll
gimbaled payload, to simultaneously minimize both roll and yaw errors. Approximate pointing error expressions for
small i, λ are summarized on Table 12.1.
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Table 12.1. Pointing Errors Due to Orbit Inclination.

Nominal Attitude Error

Roll Pitch Ya w

Orbit Normal i/ [ro/re − 1] = 0. 178 i (i2/4)/[ro/re − 1] i

Equatorial Normal i(ro/re)/[ro/re − 1] = 1. 178 i (i2/4)/[ro/re − 1] 0

For the limiting case of λ at a grazing angle, i.e., spacecraft to target point line tangent to the earth disk,

sin λ = √  r2
o − r2

e /ro ; cos λ = re/ro , (12.6)
and

ε ≈ −(i2/2)(re/ro)√  1 − (re/ro)2 = i2/13. 4 ; synchronous orbit. (12.7)

The above error was computed assuming a pointing reference, such as an earth sensor, that maintains the
spacecraft yaw axis nadir pointed. A related case of interest is when a beacon tracking sensor is used which main-
tains a spacecraft axis (beacon LOS) pointed at a fixed point on the earth surface. Then, the pointing error at a target
point λt is computed as the difference between errors introduced at the beacon at say λs and the target point, i.e., us-
ing (5)

δε = ε(λt) − ε(λs) .  (12.8)

12.2 Longitude Drift

The geometry of longitudinal drift is identical to Figure 12.1 where α is payload pitch pointing offset, λ is the
longitude displacement of the payload target point from the on-station subsatellite point, and i is the satellite longi-
tude drift angle. Thus, the East-West (pitch) pointing error for longitude drift is given by Eq. 5. There are no roll
and yaw errors related to longitude drift.

12.3 Roll and Pitch Errors Induced by Yaw Error

A number of trigonometric relations applicable to the spacecraft-earth geometry are summarized on Figure
12.3. At an arbitrary point on the earth surface a yaw attitude error ε3 introduces roll and pitch pointing errors ε1, ε2

as illustrated on Figure 12.2.

ε1

1 - Roll

3 - Yaw

Figure 12.2  Yaw Attitude Error Geometry.2 - Pitch
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Three position vectors shown and used for calculating roll and pitch errors are

r1 = [−re sin λ sin θ, −re sin λ cos θ, ro − re cos λ]T = [x, y, z]T (12.9)

r2 = [−re sin λsin(θ + ε3), −re sin λcos(θ + ε3), ro − re cos λ]T (12.10)

r3 = [−re sin λ sin θ, −re sin λcos(θ + ε3), ro − re cos λ]T . (12.11)

With appropriate resolution of the sign ambiguity, the roll error is obtained as

tan ε1 = ±|r1 × r3|/|r1 ⋅ r3| (12.12)

=
±[cos(θ + ε3) − cos θ]re sin λ[(re cos λ sin θ)2 + (ro − re cos λ)2]1/2

[ro − re cos λ]2 + [re sin λ]2[cosθcos(θ + ε3) + sin2 θ]

≈
±ε3 sin θ[re sin λ][(re cos λ sin θ)2 + (ro − re cos λ)2]1/2

[ro − re cos λ]2 + [re sin λ]2
→ ε3(re/ro)sinθ sin λ = −(x/ro)ε3 ; re << ro ,

=
±ε3re sin λ[(re cos λ)2 + (ro − re cos λ)2]1/2

[ro − re cos λ]2 + [re sin λ]2
; θ → 90o

the latter two forms for small ε3. As θ → 0,

tan ε1 ≈ ε1 ≈
±(ε2

3/2)re sin λ[ro − re cos λ]

r2
o + r2

e − 2rore cos λ
; θ → 0 ,  (12.13)

while

tan ε1 ≈ ε1 ≈
±ε3re sin λ

{r2
o + r2

e − 2rore cos λ}1/2
→ ±ε3[re/ro]sinλ ; re/ro << 1, θ → 90o . (12.14)

For worst case at the grazing tangent angle

sin λ = [1 − (re/ro)2]1/2 ; cos λ = re/ro (12.15)

tan ε1 ≈
±ε3(re/ro)sinθ{[(re/ro)2 sin θ]2 + [1 − (re/ro)2]2}1/2

[1 − (re/ro)2]1/2
(12.16)

≈
±ε3(re/ro){[(re/ro)2]2 + [1 − (re/ro)2]2}1/2

[1 − (re/ro)2]1/2
; θ → 90o

≈ ±[re/ro]ε3 ; re/ro << 1

= ±0. 15 ε3 ; geosynchronous orbit .

Similarly the pitch pointing error is

tan ε2 = ±|r2 × r3|/|r2 ⋅ r3| (12.17)

=
±[sin(θ + ε3) − sin θ]re sin λ[(re sin λcos(θ + ε3))2 + (ro − re cos λ)2]1/2

[ro − re cos λ]2 + [re sin λ]2[sinθsin(θ + ε3) + cos2(θ + ε3)]

≈
±ε3 cos θ[re sin λ][(re sin λ cos θ)2 + (ro − re cos λ)2]1/2

[ro − re cos λ]2 + [re sin λ]2
→ ε3(re/ro)cosθ sin λ = −(y/ro)ε3 ; re << ro ,

when ε3 is small. As θ vanishes,

tan ε2 ≈ ε2 ≈
±ε3re sin λ

{r2
o + r2

e − 2rore cos λ}1/2
→ ±ε3[re/ro]sinλ ; re/ro << 1, θ → 0o . (12.18)

Maximum pitch error occurs when θ → 0 for maximum λ and is the same as maximum roll error in (12.16) above.

38



β

λ

1 - Roll

3 - Yaw

2 - Pitch

Earth 
Center

ro

re

θ

Spacecraft

Target 
Point

North

λ =  Sin-1[(ro/re)sinα] - α ;α = Tan-1[resinλ/(ro - recosλ)] 

θ =  Tan-1[sinγ/tanδ] ;λ = Sin-1{[1 - (cosδcosγ)2]1/2} =  Cos-1[cosδcosγ] 

δ =  Sin-1[cosθsinλ] ;γ = Sin-1{sinθsinλ/[1 - (cosθsinλ)2]1/2} =  Tan-1[sinθtanλ] 

θ =  Tan-1[sinβ/tanα'] ;α = Sin-1{[1 - (cosα'cosβ)2]1/2} 
α' =  Sin-1[cosθsinα] ;β = Sin-1{sinθsinα/[1 - (cosθsinα)2]1/2}

θ

γ

α'
α

ρ

γ = Longitude 
δ = Geodetic Latitude 
f = 1/298.3 = Flattening Factor 
       ρ1  =  -νrecosδ sinγ 
ρ =  ρ2  =  -νre(1 - f)2sinδ 
       ρ3  =  ro - νrecosδ cosγ 
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tanβ = ρ1/ρ3
 

Figure 12.3  Spacecraft-Earth Pointing Geometry.
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13.0 Four XIPS Orbit Maintenance

The following is the writer’s description of the ion thruster mounting geometry and operational plan as defined
and patented by Bernie Anzel. The scheme will of course work with any thrusters, but its inefficiency is more toler-
able with ion thrusters. One suitable description is to note four XIPS (xenon ion propulsion system) thrusters are
mounted with their thrust vectors along the four corner edges of a pyramid whose apex is at the spacecraft center-of-
mass and whose base is normal to the nadir line, or the yaw axis. The described geometry is depicted by Figure 1.
Each of the thrusters has force components along all three spacecraft axes, roll, pitch, and yaw. Taken as pairs, one
pair (say the North pair, F1 and F4) has positive orbit normal (pitch) thrust, and opposing tangential (roll) compo-
nents of thrust. The second pair (South pair F2 and F3) has negative pitch thrust and opposing roll. All four
thrusters have radial (yaw) thrust with the same sign, although the sign does not matter.

There are fundamentally three orbit perturbation effects, each described briefly elsewhere in this document, to
be corrected in geosynchronous orbits: 1) inclination due to sun and moon gravity, 2) eccentricity due to solar radia-
tion acceleration, and 3) longitude drift or period error due to earth’s gravitational triaxiality. During any one orbit
the two South pointing thrusters will be fired for an interval centered at the ascending node of the orbit and the North
pointing thrusters will be fired for an interval about the descending node, such that their respective orbit normal ac-
celerations remove orbit inclination. One way to compensate for solar acceleration is insertion of a radial velocity
increment outward at noon or inward at midnight. Alternatively, eccentricity may be corrected by two tangential
maneuvers, in opposite directions with respect to orbit velocity, respectively at dawn and dusk. The former will be
employed when noon/midnight is near the line of nodes at 90o right ascension (solstices) and the latter when the line
of nodes is near dawn/dusk (equinoxes). Compensation for triaxiality requires tangential impulses in the same direc-
tion with respect to orbit velocity at two orbit positions separated by 180o, but not fixed to any particular true anom-
aly or inertial orientation, hence they can be applied at the nodes in conjunction with inclination control. From the
preceding we conclude that at any time of year the orbit maintenance corrections can be effected by the application
the correct three dimensional velocity increment at the two nodes. This may be accomplished by firing the South
thrusting pair, F1 and F4 at the ascending node, and the North thrusting pair at the descending node. The total firing
time determines the inclination correction, the differential in the sum of firing times on the two sides of the orbit de-
termine a net radial velocity increment, and a differential in firing time of the two individual thrusters at either or
both nodes produces one or two tangential impulses in either desired direction.

2 - Pitch 
Normal

1 - Roll 
Tangential

3 - Yaw 
Nadir

Figure 13.1  Four XIPS Thruster Mounting Geometry.
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We remark that the Hughes Galaxy on which XIPS are first being flown has thruster pairs F1, F4 and F2, F3

essentially in the pitch-yaw plane so they do not provide for a tangential velocity increment. As a result, they are
used only to control inclination and the component of eccentricity that is radial at the line of nodes. i.e., the "sol-
stice" component. Triaxiality and the "equinox" component of eccentricity are controlled with chemical thrusters.

If a thruster fails a new degraded operational scenario is introduced. For descriptive purposes say that F4 fails.
Then individual thrusters F1 and F3 will be used respectively at the ascending and descending nodes with a time du-
ration to give the required inclination correction and a time differential to produce the necessary tangential velocity
increment. The two firings may induce an unwanted radial velocity increment so subsequent eccentricity control is
performed by firing F1 and F3 for equal time simultaneously, or closely in sequence if simultaneous firing is pre-
cluded by the failure, at a point approximately 90o of true anomaly from the node.

Let the two burns be identified by superscripts a and b, and let F
j
i denote the force component of thruster i

along axis j, ∆ti denote the burn duration of thruster i, etc. Then the incremental velocities are

∆Vn = |F2
1|∆t1 + |F2

2|∆t2 + |F2
3|∆t3 + |F2

4|∆t4 = Σ |F2
i |∆ti

∆Vr = {F3
1∆t1 + F3

4∆t4} − {F3
2∆t2 + F3

3∆t3}

∆Va
t = F1

1∆t1 + F1
4∆t4

∆Vb
t = F1

2∆t2 + F1
3∆t3

and in matrix format







∆Vn

∆Vr

∆Va
t

∆Vb
t







=







F2
1

F3
1

F1
1

0

F2
2

−F3
2

0

F1
2

F2
3

−F3
3

0

F1
3

F2
4

F3
4

F1
4

0













∆t1
∆t2
∆t3
∆t4







.

Hence, given the desired velocities it is simple to solve for the firing time. Of course this does not account for the
practical realizability of the firing times, e.g., negative values.

It is also possible to displace the thrusters slightly from the cm and dump momentum in the same maneuver.

Such displacements will alter the F
j
i slightly and the delivered ∆V. Ultimately, the non-linear problem should be for-

mulated so that a simultaneous solution is obtained for the ∆V and ∆h equations for the firing times and the thrust
alignment parameters.

Obsidian

Here consider some quantitative values for the Obsidian spacecraft. Using an average daily inclination veloc-
ity increment of ∆Vn = 150 / 365. 25 = 0. 41 ft/sec, 13 cm, F = 0. 004 lb thrusters with a 45o cant and a 5000 lb space-
craft the sum of daily firing times is

i
Σ∆ti = {m/ [(sinθc)F]}∆Vn = (5000 lb/32. 2 ft/sec2)/[2sin45o(0. 004 lb)]}0. 41 ft/sec = 315 min = 6. 25 hrs .

The actual thrusting time will be closer to half this value because when inclination control dominates (tangential
components small) two thrusters will usually be on simultaneously. Further, we evaluate the momentum dumping
capability. Assume a ±10o range gimbal on the thruster and a 6 ft displacement from the cm. Then the maximum
momentum increment is approximately

∆h1 = 2(sin10o)6 ft(0. 004 lb)[3600(6. 25/2) sec] = 94 ft − lb − sec .

Since we expect 1 to 5 ft-lb-sec per day maximum secular roll-yaw momentum and 10 to 20 ft-lb-sec per day of sec-
ular pitch momentum, it should not be difficult to dump with the XIPS thrusters.
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